Advertisement

The European Physical Journal A

, Volume 31, Issue 3, pp 273–278 | Cite as

Constrained relativistic mean-field approach with fixed configurations

Regular Article - Nuclear Structure and Reactions

Abstract.

A diabatic (configuration-fixed) constrained approach to calculate the potential energy surface (PES) of the nucleus is developed in the relativistic mean-field model. As an example, the potential energy surfaces of 208Pb obtained from both adiabatic and diabatic constrained approaches are investigated and compared. It is shown that the diabatic constrained approach enables one to decompose the segmented PES obtained in usual adiabatic approaches into separate parts uniquely characterized by different configurations, to follow the evolution of single-particle orbits till the very deformed region, and to obtain several well-defined deformed excited states which can hardly be expected from the adiabatic PESs.

PACS.

21.10.Dr Binding energies and masses 21.10.Re Collective levels 21.60.Jz Hartree-Fock and random-phase approximations 21.10.Pc Single-particle levels and strength functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  2. 2.
    P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).CrossRefADSGoogle Scholar
  3. 3.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).CrossRefGoogle Scholar
  4. 4.
    J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996).CrossRefADSGoogle Scholar
  5. 5.
    J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998).CrossRefADSGoogle Scholar
  6. 6.
    N.K. Glendenning, Compact Stars (Springer-Verlag, New York, 2000).Google Scholar
  7. 7.
    J. König, P. Ring, Phys. Rev. Lett. 71, 3079 (1993).CrossRefADSGoogle Scholar
  8. 8.
    J. Meng, H. Toki, J.Y. Zeng, S.Q. Zhang, S.G. Zhou, Phys. Rev. C 65, R041302 (2002).Google Scholar
  9. 9.
    A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969).CrossRefADSGoogle Scholar
  10. 10.
    K.T. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969).CrossRefADSGoogle Scholar
  11. 11.
    J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).CrossRefADSGoogle Scholar
  12. 12.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998).Google Scholar
  13. 13.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999).CrossRefADSGoogle Scholar
  14. 14.
    S.G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003).CrossRefADSGoogle Scholar
  15. 15.
    H. Madokoro, J. Meng, M. Matsuzaki, S. Yamaji, Phys. Rev. C 62, 061301 (2000).CrossRefADSGoogle Scholar
  16. 16.
    Z.Y. Ma, A. Wandelt, N.V. Giai, D. Vretenar, P. Ring, L.G. Cao, Nucl. Phys. A 703, 222 (2002).CrossRefADSGoogle Scholar
  17. 17.
    L.S. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113, 785 (2005).CrossRefADSGoogle Scholar
  18. 18.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005).CrossRefADSGoogle Scholar
  19. 19.
    J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2005).CrossRefADSGoogle Scholar
  20. 20.
    H. Flocard, P. Quentin, D. Vautherin, M. Vénéroni, A.K. Kerman, Nucl. Phys. A 231, 176 (1974).CrossRefADSGoogle Scholar
  21. 21.
    R. Bengtsson, W. Nazarewicz, Z. Phys. A 334, 269 (1989).Google Scholar
  22. 22.
    J. Meng, J.Y. Zeng, E.G. Zhao, High. En. Nucl. Phys. 18, 249 (1994).Google Scholar
  23. 23.
    F.R. Xu, P.M. Walker, J.A. Sheikh, R. Wyss, Phys. Lett. B 435, 257 (1998).CrossRefADSGoogle Scholar
  24. 24.
    L. Guo, F. Sakata, E.G. Zhao, Commun. Theor. Phys. 41, 257 (2004)Google Scholar
  25. 25.
    A. Diaz-Torres, W. Scheid, Nucl. Phys. A 757, 373 (2005).CrossRefADSGoogle Scholar
  26. 26.
    S. Ĉwiok, P.-H. Heenen, W. Nazarewicz, Nature 433, 705 (2005) and references therein.CrossRefADSGoogle Scholar
  27. 27.
    F.R. May, V.V. Pashkevich, S. Frauendorf, Phys. Lett. B 68, 113 (1977).CrossRefADSGoogle Scholar
  28. 28.
    P. Ring, Y.K. Gambhir, G.A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).MATHCrossRefADSGoogle Scholar
  29. 29.
    P. Ring, P. Schuck, The Nuclear Many-body Problem (Springer-Verlag, New York, 1980). Google Scholar
  30. 30.
    L. Guo, F. Sakata, E.G. Zhao, Phys. Rev. C 71, 024315 (2005).CrossRefADSGoogle Scholar
  31. 31.
    W.H. Long, J. Meng, N. Van Giai, S.-G. Zhou, Phys. Rev. C 69, 034319 (2004).CrossRefADSGoogle Scholar
  32. 32.
    M. Bender, P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of PhysicsPeking UniversityBeijingPRC
  2. 2.School of ScienceChinese Agriculture UniversityBeijingPRC
  3. 3.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingPRC
  4. 4.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouPRC

Personalised recommendations