Advertisement

Neck dynamics

  • M. Di Toro
  • A. Olmi
  • R. Roy
Dynamics and Thermodynamics with Nuclear Degrees of Freedom

Abstract.

Intermediate-energy heavy-ion reactions produce a mid-rapidity region or neck, mostly in the semiperipheral collisions. Brief theory and experiment surveys are presented. General properties of the mid-rapidity zone are reviewed and discussed in the framework of reaction dynamics. Hierarchy effect, neutron enrichment, isospin diffusion are all new neck phenomena which are surveyed. The main neck observables are also examined, mainly in the context of the symmetry term of the nuclear equation of state.

PACS.

25.70.-z Low and intermediate energy heavy-ion reactions 25.70.Lm Strongly damped collisions 25.70.Mn Projectile and target fragmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bonasera, G.F. Bertsch, E.N. El-Sayed, Phys. Lett. B 141, 9 (1984).CrossRefADSGoogle Scholar
  2. 2.
    M. Colonna, N. Colonna, A. Bonasera, M. Di Toro, Nucl. Phys. A 541, 295 (1992).CrossRefADSGoogle Scholar
  3. 3.
    L.G. Sobotka, Phys. Rev. C 50, 1272R (1994).CrossRefADSGoogle Scholar
  4. 4.
    M. Colonna, M. Di Toro, A. Guarnera, Nucl. Phys. A 589, 160 (1995).CrossRefADSGoogle Scholar
  5. 5.
    M. Di Toro, Progr. Part. Nucl. Phys. 42, 125 (1999).CrossRefADSGoogle Scholar
  6. 6.
    M. Di Toro, Nucl. Phys. A 681, 426c (2001).CrossRefADSGoogle Scholar
  7. 7.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, M. Zielinska-Pfabé, H.H. Wolter, Nucl. Phys. A 703, 603 (2002).CrossRefADSGoogle Scholar
  8. 8.
    V. Baran, M. Colonna, M. Di Toro, Nucl. Phys. A 730, 329 (2004).CrossRefADSGoogle Scholar
  9. 9.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).CrossRefADSGoogle Scholar
  10. 10.
    M. Colonna, M. Di Toro, G. Fabbri, S. Maccarone, Phys. Rev. C 57, 1410 (1998).CrossRefADSGoogle Scholar
  11. 11.
    R. Lionti, V. Baran, M. Colonna, M. Di Toro, Phys. Lett. B 625, 33 (2005).CrossRefADSGoogle Scholar
  12. 12.
    L. Stuttgé, Nucl. Phys. A 539, 511 (1992).CrossRefADSGoogle Scholar
  13. 13.
    R. Wada, Nucl. Phys. A 548, 471 (1992).CrossRefADSGoogle Scholar
  14. 14.
    D.E. Fields, Phys. Rev. Lett. 69, 3713 (1992).CrossRefADSGoogle Scholar
  15. 15.
    J.E. Sauvestre, Phys. Lett. B 335, 300 (1994).CrossRefADSGoogle Scholar
  16. 16.
    J. Boger, Phys. Rev. C 41, 801 (1990).CrossRefADSGoogle Scholar
  17. 17.
    S.L. Chen, Phys. Rev. C 54, R2114 (1996).Google Scholar
  18. 18.
    R. Yanez, Phys. Rev. Lett. 82, 3585 (1999).CrossRefADSGoogle Scholar
  19. 19.
    G. Casini, Phys. Rev. Lett. 71, 2567 (1993).CrossRefADSGoogle Scholar
  20. 20.
    A.A. Stefanini, Z. Phys. A 351, 167 (1995).CrossRefGoogle Scholar
  21. 21.
    J. Tõke, Phys. Rev. Lett. 75, 2920 (1995).CrossRefGoogle Scholar
  22. 22.
    J.F. Lecolley, Phys. Lett. B 354, 202 (1995).CrossRefADSGoogle Scholar
  23. 23.
    C.P. Montoya, Phys. Rev. Lett. 73, 3070 (1994).CrossRefADSGoogle Scholar
  24. 24.
    L. Beaulieu, Phys. Rev. Lett. 77, 462 (1996).CrossRefADSGoogle Scholar
  25. 25.
    S. Piantelli, Phys. Rev. Lett. 88, 052701 (2002).CrossRefADSGoogle Scholar
  26. 26.
    P. Pawlowski, Eur. Phys. J. A 9, 371 (2000).CrossRefADSGoogle Scholar
  27. 27.
    D. Doré, Phys. Rev. C 63, 034612 (2001).CrossRefADSGoogle Scholar
  28. 28.
    W.G. Lynch, Nucl. Phys. A 583, 471c (1995).CrossRefADSGoogle Scholar
  29. 29.
    J. Łukasik, Phys. Lett. B 566, 76 (2003).CrossRefADSGoogle Scholar
  30. 30.
    Y. Larochelle, Phys. Rev. C 59, R565 (1999).Google Scholar
  31. 31.
    A. Mangiarotti, Phys. Rev. Lett. 93, 232701 (2004).CrossRefADSGoogle Scholar
  32. 32.
    J. Péter, Nucl. Phys. A 593, 95 (1995).CrossRefADSGoogle Scholar
  33. 33.
    J. Łukasik, Phys. Rev. C 55, 1906 (1997).CrossRefADSGoogle Scholar
  34. 34.
    J. Tõke, Nucl. Phys. A 583, 519c (1995).CrossRefGoogle Scholar
  35. 35.
    J. Tõke, Phys. Rev. Lett. 77, 3514 (1996).CrossRefGoogle Scholar
  36. 36.
    Y. Larochelle, Phys. Rev. C 55, 1869 (1997).CrossRefADSGoogle Scholar
  37. 37.
    P. Pawlowski, Phys. Rev. C 57, 1771 (1998).MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    T. Lefort, Nucl. Phys. A 662, 397 (2000)CrossRefADSGoogle Scholar
  39. 39.
    F. Bocage, Nucl. Phys. A 676, 391 (2000).CrossRefADSGoogle Scholar
  40. 40.
    B. Grabez, Phys. Rev. C 64, 057601 (2001).CrossRefADSGoogle Scholar
  41. 41.
    L. Gingras, Phys. Rev. C 65, 061604 (2002).CrossRefADSGoogle Scholar
  42. 42.
    B. Davin, Phys. Rev. C 65, 064614 (2002).CrossRefADSGoogle Scholar
  43. 43.
    J. Colin, Phys. Rev. C 67, 064603 (2003).CrossRefADSGoogle Scholar
  44. 44.
    A. Pagano, Nucl. Phys. A 734, 504c (2004).CrossRefADSGoogle Scholar
  45. 45.
    J.F. Dempsey, Phys. Rev. C 54, 1710 (1996).CrossRefADSGoogle Scholar
  46. 46.
    G. Poggi, Nucl. Phys. A 685, 296c (2001).CrossRefADSGoogle Scholar
  47. 47.
    P.M. Milazzo, Phys. Lett. B 509, 204 (2001).CrossRefADSGoogle Scholar
  48. 48.
    P.M. Milazzo, Nucl. Phys. A 703, 466 (2002).CrossRefADSGoogle Scholar
  49. 49.
    P.M. Milazzo, Nucl. Phys. A 756, 39 (2005).CrossRefADSGoogle Scholar
  50. 50.
    D.V. Shetty, Phys. Rev. C 68, 021602(R) (2003).CrossRefADSGoogle Scholar
  51. 51.
    D.V. Shetty, Phys. Rev. C 70, 011601(R) (2004).CrossRefADSGoogle Scholar
  52. 52.
    E. Plagnol, Phys. Rev. C 61, 014606 (2000).CrossRefADSGoogle Scholar
  53. 53.
    Y. Larochelle, Phys. Rev. C 62, 051602(R) (2000).CrossRefADSGoogle Scholar
  54. 54.
    D. Thériault, Phys. Rev. C 71, 014610 (2005).CrossRefADSGoogle Scholar
  55. 55.
    Chimera Collaboration (E. De Filippo), Phys. Rev. C 71, 044602 (2005).CrossRefADSGoogle Scholar
  56. 56.
    S. Hudan, Phys. Rev. C 71, 054604 (2005).CrossRefADSGoogle Scholar
  57. 57.
    L.G. Sobotka, Phys. Rev. C 55, 2109 (1997).CrossRefADSGoogle Scholar
  58. 58.
    L.G. Sobotka, Phys. Rev. C 62, 031603(R) (2000).CrossRefADSGoogle Scholar
  59. 59.
    H. Xu, Phys. Rev. C 65, 061602(R) (2002).CrossRefADSGoogle Scholar
  60. 60.
    M.B. Tsang, Phys. Rev. Lett. 92, 062701 (2004).CrossRefADSGoogle Scholar
  61. 61.
    F. Rami, Phys. Rev. Lett. 84, 1120 (2000).CrossRefADSGoogle Scholar
  62. 62.
    Chimera Collaboration (E. De Filippo, A. Pagano, E. Piasecki), Phys. Rev. C 71, 064604 (2005).CrossRefADSGoogle Scholar
  63. 63.
    Chimera Collaboration (J. Wilczyński), Int. J. Mod. Phys. E 14, 353 (2005)CrossRefADSGoogle Scholar
  64. 64.
    It has been proposed to call the Viola-violation-correlation plot as Wilczyński-2 Plot. Indeed this correlation, very important to rule out a statistical fission scenario for fragments produced at mid-rapidity, nicely emerged during hot discussions of one of us (M.D.T.) with J. Wilczyński at the LNS-INFN, Catania. In fact this correlation represents also a chronometer of the fragment formation mechanism. In this sense it is the nice Fermi energy complement of the famous Wilczyński Plot which gives the time scales in Deep-Inelastic Collisions.Google Scholar
  65. 65.
    V. Baran, M. Colonna, M. Di Toro, M. Zielinska-Pfabé, H.H. Wolter, Phys. Rev. C 72, 064620 (2005).CrossRefADSGoogle Scholar
  66. 66.
    L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. Lett. 94, 032701 (2005).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratori Nazionali del Sud INFN, Department of Physics and AstronomyUniversity of CataniaItaly
  2. 2.INFN - Sezione di FirenzeSesto FiorentinoItaly
  3. 3.Département de physique, de génie physique et d'optiqueUniversité LavalQuébecCanada

Personalised recommendations