Advertisement

Mass measurements of neutron-deficient nuclides close to A = 80 with a Penning trap

  • A. Kankainen
  • L. Batist
  • S. A. Eliseev
  • V. -V. Elomaa
  • T. Eronen
  • U. Hager
  • J. Hakala
  • A. Jokinen
  • I. Moore
  • Yu. N. Novikov
  • H. Penttilä
  • K. Peräjärvi
  • A. V. Popov
  • S. Rahaman
  • S. Rinta-Antila
  • P. Ronkanen
  • A. Saastamoinen
  • D. M. Seliverstov
  • T. Sonoda
  • G. K. Vorobjev
  • J. Äystö
Nuclear Structure and Reactions

Abstract.

The masses of 80, 81, 82, 83Y, 83, 84, 85, 86, 88Zr and 85, 86, 87, 88Nb have been measured with a typical precision of 7keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides.

PACS.

21.10.Dr Binding energies and masses 27.50.+e 59 ⩽ A ⩽ 89 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. 45, 389 (1981).CrossRefADSGoogle Scholar
  2. 2.
    H. Schatz, Phys. Rep. 294, 167 (1998).CrossRefADSGoogle Scholar
  3. 3.
    H. Schatz, Phys. Rev. Lett. 86, 3471 (2001).CrossRefADSGoogle Scholar
  4. 4.
    H. Schatz, K.E. Rehm, to be published in Nucl. Phys. A.Google Scholar
  5. 5.
    Yu.N. Novikov, Eur. Phys. J. A 11, 257 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. Kankainen, Eur. Phys. J. A 25, 355 (2005).CrossRefADSGoogle Scholar
  7. 7.
    P. Dendooven, Nucl. Instrum. Methods Phys. Res. A 408, 530 (1998).CrossRefGoogle Scholar
  8. 8.
    J. Äystö, Nucl. Phys. A 693, 477 (2001).CrossRefADSGoogle Scholar
  9. 9.
    A. Nieminen, Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001).CrossRefADSGoogle Scholar
  10. 10.
    V.S. Kolhinen, Nucl. Instrum. Methods Phys. Res. A 528, 776 (2004). CrossRefADSGoogle Scholar
  11. 11.
    M. König, Int. J. Mass Spectrom. Ion. Proc. 142, 95 (1995).CrossRefGoogle Scholar
  12. 12.
    S. Rinta-Antila, Phys. Rev. C 70, 011301 (2004).CrossRefADSGoogle Scholar
  13. 13.
    K. Blaum, J. Phys. B: At. Mol. Opt. Phys. 36, 921 (2003).CrossRefADSGoogle Scholar
  14. 14.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  15. 15.
    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003).CrossRefADSGoogle Scholar
  16. 16.
    G. Audi, Nucl. Phys. A 729, 3 (2003).CrossRefADSGoogle Scholar
  17. 17.
    J. Huikari, Nucl. Instrum. Methods Phys. Res. B 222, 632 (2004).CrossRefADSGoogle Scholar
  18. 18.
    C.J. Lister, Phys. Rev. C 24, 260 (1981).CrossRefADSGoogle Scholar
  19. 19.
    S. Della Negra, Z. Phys. A 307, 305 (1982).CrossRefGoogle Scholar
  20. 20.
    M. Shibata, J. Phys. Soc. Jpn. 65, 3172 (1996).CrossRefGoogle Scholar
  21. 21.
    S. Issmer, Eur. Phys. J. A 2, 173 (1998).CrossRefADSGoogle Scholar
  22. 22.
    C.J. Barton, Phys. Rev. C 67, 034310 (2003).CrossRefADSGoogle Scholar
  23. 23.
    A.S. Lalleman, Hyperfine Interact. 132, 315 (2001).CrossRefADSGoogle Scholar
  24. 24.
    M. Chartier, J. Phys. G 31, S1771 (2005).Google Scholar
  25. 25.
    C. Deprun, Z. Phys. A 295, 103 (1980).CrossRefGoogle Scholar
  26. 26.
    E. Hagberg, Nucl. Phys. A 395, 152 (1983).CrossRefADSGoogle Scholar
  27. 27.
    S. Kato, Phys. Rev. C 41, 1276 (1990).CrossRefADSGoogle Scholar
  28. 28.
    J.B. Ball, R.L. Auble, P.G. Roos, Phys. Rev. C 4, 196 (1971).CrossRefADSGoogle Scholar
  29. 29.
    T. Kuroyanagi, Nucl. Phys. A 484, 264 (1988).CrossRefADSGoogle Scholar
  30. 30.
    A. Jungclaus, Z. Phys. A 352, 3 (1995).CrossRefGoogle Scholar
  31. 31.
    S.K. Tandel, Phys. Rev. C 65, 054307 (2002).CrossRefADSGoogle Scholar
  32. 32.
    M. Oinonen, Nucl. Instrum. Methods Phys. Res. A 416, 485 (1998).CrossRefGoogle Scholar
  33. 33.
    S. Della Negra, D. Jacquet, Y. Le Beyec, Z. Phys. A 308, 243 (1982).CrossRefGoogle Scholar
  34. 34.
    E.K. Warburton, Phys. Rev. C 31, 1211 (1985).CrossRefADSGoogle Scholar
  35. 35.
    T. Shizuma, Z. Phys. A 348, 25 (1994).CrossRefGoogle Scholar
  36. 36.
    B. Singh, Nucl. Data Sheets 94, 1 (2001).CrossRefADSGoogle Scholar
  37. 37.
    K. Oxorn, S.K. Mark, Z. Phys. A 316, 97 (1984).CrossRefGoogle Scholar
  38. 38.
    M. Matos, Proceedings of the EXON-04 Conference, Peterhof, July 2005 (World Scientific, Singapore, 2005) p. 90.Google Scholar
  39. 39.
    U. Hager, Phys. Rev. Lett. 96, 042504 (2006).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • A. Kankainen
    • 1
  • L. Batist
    • 2
  • S. A. Eliseev
    • 2
    • 3
  • V. -V. Elomaa
    • 1
  • T. Eronen
    • 1
  • U. Hager
    • 1
  • J. Hakala
    • 1
  • A. Jokinen
    • 1
  • I. Moore
    • 1
  • Yu. N. Novikov
    • 2
  • H. Penttilä
    • 1
  • K. Peräjärvi
    • 1
  • A. V. Popov
    • 2
  • S. Rahaman
    • 1
  • S. Rinta-Antila
    • 1
  • P. Ronkanen
    • 1
  • A. Saastamoinen
    • 1
  • D. M. Seliverstov
    • 2
  • T. Sonoda
    • 1
  • G. K. Vorobjev
    • 2
    • 3
  • J. Äystö
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläFinland
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.GSIDarmstadtGermany

Personalised recommendations