Advertisement

Beta decay of 94Pd and of the 71 s isomer of 94Rh

  • L. Batist
  • A. Blazhev
  • J. Döring
  • H. Grawe
  • M. Kavatsyuk
  • O. Kavatsyuk
  • R. Kirchner
  • M. La Commara
  • C. Mazzocchi
  • I. Mukha
  • C. Plettner
  • E. Roeckl
  • M. Romoli
Nuclear Structure and Reactions

Abstract.

The β decay of 94Pd and of the 71s isomer of 94Rh was investigated by using total γ-ray absorption techniques. Several levels in 94Rh are established, including a new low-lying isomer characterized by a half-life of 0.48(3)μs and a de-exciting transition of 55keV. E2 multipolarity is determined for this transition by measuring the intensities of its γ-rays and the characteristic X-rays from its electron conversion. On the basis of the measured reduced β-decay transition rates to known 94Ru levels and shell model considerations, the spin-parity of the 71s and the 0.48μs isomers of 94Rh is assigned to be (4+) and (2+), respectively. The β-decay strength distributions measured for 94Pd and the 71s isomer of 94Rh yield Q EC values of 6700(320) and 9750(320)keV for these decays and give evidence for the population of those states below and above the magic N = 50 gap that belong to both components of the 0g spin-orbit doublet.

PACS.

27.60.+j 90≤A≤140 21.10.Hw Spin, parity, and isobaric spin 21.10.Tg Lifetimes 23.40.-s Beta decay; double beta decay; electron and muon capture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Roeckl, Lect. Notes Phys. 651, 223 (2004).ADSGoogle Scholar
  2. 2.
    I. Mukha, Phys. Rev. Lett. 95, 022501 (2005).CrossRefADSGoogle Scholar
  3. 3.
    I. Mukha, Nature 439, 298 (2006).CrossRefADSGoogle Scholar
  4. 4.
    H. Schatz, Phys. Rep. 294, 167 (1998).CrossRefADSGoogle Scholar
  5. 5.
    C. Fröhlich, Phys. Rev. Lett. 96, 142502 (2006).CrossRefADSGoogle Scholar
  6. 6.
    G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).CrossRefADSGoogle Scholar
  7. 7.
    W. Kurcewicz, Z. Phys. A 308, 21 (1982).CrossRefADSGoogle Scholar
  8. 8.
    K. Oxorn, B. Singh, S.K. Mark, Z. Phys. A 294, 389 (1980).CrossRefADSGoogle Scholar
  9. 9.
    I.P. Johnstone, L.D. Skouras, Phys. Rev. C 53, 3150 (1996)CrossRefADSGoogle Scholar
  10. 10.
    H. Herndl, B.A. Brown, Nucl. Phys. A 627, 35 (1997). CrossRefADSGoogle Scholar
  11. 11.
    J.C. Hardy, Phys. Lett. B 71, 307 (1977)CrossRefADSGoogle Scholar
  12. 12.
    M. Karny, Nucl. Instrum. Methods Phys. Res. B 126, 411 (1997).CrossRefGoogle Scholar
  13. 13.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).Google Scholar
  14. 14.
    Z. Hu, Phys. Rev. C 60, 024315 (1999)CrossRefADSGoogle Scholar
  15. 15.
    M. Karny, Nucl. Phys. A 690, 367 (2001).CrossRefADSGoogle Scholar
  16. 16.
    C. Plettner, Phys. Rev. C 66, 044319 (2002).CrossRefADSGoogle Scholar
  17. 17.
    M. Karny, Eur. Phys. J. A 25, s01, 135 (2005).Google Scholar
  18. 18.
    O. Kavatsyuk, Eur. Phys. J. A 25, 211 (2005).CrossRefADSGoogle Scholar
  19. 19.
    H.V. Klapdor, C.O. Wene, J. Phys. G 6, 1061 (1980).CrossRefADSGoogle Scholar
  20. 20.
    L. Batist, Nucl. Phys. A 720, 245 (2003).CrossRefADSGoogle Scholar
  21. 21.
    L. Batist, GSI Scientific Report 2003, p. 11, http:// wwwaix.gsi.de/annrep2003.Google Scholar
  22. 22.
    B.A. Brown, MSU-NSCL Report 1289.Google Scholar
  23. 23.
    R. Kirchner, Nucl. Instrum. Methods. Phys. Res. B 26, 204 (1987).CrossRefADSGoogle Scholar
  24. 24.
    E. Roeckl, Nucl. Instrum. Methods Phys. Res. B 204, 53 (2003).CrossRefADSGoogle Scholar
  25. 25.
    I. Mukha, Eur. Phys. J. A 25, s01, 131 (2005).Google Scholar
  26. 26.
    R.S. Hager, E.C. Seltzer, Nucl. Data A 4, 1 (1968).CrossRefGoogle Scholar
  27. 27.
    I.P. Johnstone, L.D. Skouras, Eur. Phys. J. A 11, 125 (2001).MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    E. Nolte, G. Korschinek, U. Heim, Z. Phys. A 298, 191 (1980).CrossRefADSGoogle Scholar
  29. 29.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefADSGoogle Scholar
  30. 30.
    J.A. Clark, Eur. Phys. J. A 25, s01, 629 (2005).Google Scholar
  31. 31.
    R. Gross, A. Frenkel, Nucl. Phys. A 267, 85 (1976).CrossRefADSGoogle Scholar
  32. 32.
    D. Rudolph, K.P. Lieb, H. Grawe, Nucl. Phys. A 597, 298 (1996).CrossRefADSGoogle Scholar
  33. 33.
    I.S. Towner, Nucl. Phys. A 444, 402 (1985).CrossRefADSGoogle Scholar
  34. 34.
    K. Rykaczewski, Z. Phys. A 322, 263 (1985).CrossRefADSGoogle Scholar
  35. 35.
    K. Rykaczewski, GSI-90-62 (1990).Google Scholar
  36. 36.
    M.S. Antony, A. Pape, J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).CrossRefADSGoogle Scholar
  37. 37.
    I.P. Johnstone, Phys. Rev. C 44, 1476 (1991).CrossRefADSGoogle Scholar
  38. 38.
    A. Juodagalvis, D.J. Dean, Phys. Rev. C 72, 024306 (2005).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • L. Batist
    • 1
    • 2
  • A. Blazhev
    • 3
    • 4
  • J. Döring
    • 4
  • H. Grawe
    • 3
  • M. Kavatsyuk
    • 3
    • 5
  • O. Kavatsyuk
    • 3
    • 5
  • R. Kirchner
    • 3
  • M. La Commara
    • 2
  • C. Mazzocchi
    • 3
  • I. Mukha
    • 3
    • 6
  • C. Plettner
    • 3
  • E. Roeckl
    • 3
  • M. Romoli
    • 2
  1. 1.St. Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.Department of Physics of the University “Federico II”NapoliItaly
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany
  4. 4.University of SofiaSofiaBulgaria
  5. 5.National Taras Shevchenko University of KyivKyivUkraine
  6. 6.University of SevilleSevillaSpain

Personalised recommendations