X-ray phase contrast imaging at MAMI

  • M. El-Ghazaly
  • H. Backe
  • W. Lauth
  • G. Kube
  • P. Kunz
  • A. Sharafutdinov
  • T. Weber
MAMI 2005


Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical magnification of up to 7.4 high-quality holograms of tiny transparent strings were taken in which the holographic information is contained in up to 18 interference fringes.


87.59.Bh X-ray radiography 52.59.Px Hard X-ray sources 41.50.+h X-ray beams and X-ray optics 07.85.Fv X- and gamma-ray sources, mirrors, gratings, and detectors 07.85.Nc X-ray and gamma-ray spectrometers 


  1. 1.
    F. Arfelli, M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palmaz, M. Di Michiel, R. Longox, A. Olivox, S. Panix, D. Pontoni, P. Poropat, M Prestx, A Rashevskyx, G. Trombay, A. Vacchix, E. Vallazza, F. Zanconati, Phys. Med. Biol. 43, 2845 (1998).CrossRefGoogle Scholar
  2. 2.
    C.J. Kotre, I.P. Birch, Phys. Med. Biol. 44, 2853 (1999).CrossRefGoogle Scholar
  3. 3.
    L.D. Turner, B.B. Dhal, J.P. Hayes, A.P. Mancuso, K.A. Nugent, D. Paterson, R.E. Scholten, C.Q. Tran, A.G. Peele, Opt. Expr. 12, 2960 (2004).CrossRefADSGoogle Scholar
  4. 4.
    F. Pfeiffer, T. Weitkamp, O. Bunk, Ch. David, Nature Physics ---advance online publication--- naturephysics, published online: 26 March 2006Google Scholar
  5. 5.
    S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W. Stevenson, Nature (London) 384, 335 (1996).CrossRefADSGoogle Scholar
  6. 6.
    Xizeng Wu, Hong Liu, Med. Phys. 30, 2169 (2003).CrossRefGoogle Scholar
  7. 7.
    T. Takeda, A. Momose, E. Ueno, Y. Itai, J. Synchrotron Rad. 5, 1133 (1998).CrossRefGoogle Scholar
  8. 8.
    R.A. Lewis, Phys. Med. Biol. 49, 3573 (2004).CrossRefGoogle Scholar
  9. 9.
    D. Gabor, Nature 161, 777 (1948).ADSGoogle Scholar
  10. 10.
    P. Spanne, C. Raven, I. Snigireva, A. Snigirev, Phys. Med. Biol. 44, 741 (1999).CrossRefGoogle Scholar
  11. 11.
    P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, M. Schlenker, J. Phys. D 29, 133 (1996).CrossRefADSGoogle Scholar
  12. 12.
    Z.W. Hu, B. Lai, Y.S. Chu, Z. Cai, D.C. Mancini, B.R. Thomas, A.A. Chernov, Phys. Rev. Lett. 87, 148101 (2001).CrossRefADSGoogle Scholar
  13. 13.
    R.W. James, The optical Principles of the Diffraction of X-rays (Cornell University Press, 1965).Google Scholar
  14. 14.
    V. Kohn, I. Snigireva, A. Snigirev, Opt. Commun. 198, 293 (2001).CrossRefADSGoogle Scholar
  15. 15.
    Mahmoud El Ghazaly, X-ray Phase Contrast Imaging at the Mainz Microtron MAMI, Dissertation, Institut für Kernphysik, Universität Mainz, 2005. Google Scholar
  16. 16.
    B.L. Henke, J.Y. Uejio, G.F. Stone, C.H. Dittmore, F.G. Fujiwara, J. Opt. Soc. Am. B. 11, 1540 (1986).ADSCrossRefGoogle Scholar
  17. 17.\-Super\-Coolscan\-4000\-ED.html.Google Scholar
  18. 18.
    Georg Joos, Erwin Schopper, Grundriss der Photographie und ihrer Anwendungen besonders in der Atomphysik (Akademische Verlagsgesellschaft M. B. H., Frankfurt am Main, 1958).Google Scholar
  19. 19.
    Y. Hwu, H.H. Hsieh, M.J. Lu, W.L. Tsai, H.M. Lin, W.C. Goh, B. Lai, J.H. Je, C.K. Kim, D.Y. Noh, H.S. Youn, G. Tromba, G. Margaritondo, J. Appl. Phys. 86, 4613 (1999).CrossRefADSGoogle Scholar
  20. 20.
    O. Chubar, A. Snigirev, S. Kuznetsov, T. Weitkamp, V. Kohn, Proceedings DIPAC 2001, ESRF, Grenoble, France.Google Scholar
  21. 21.
    A. Caticha, Phys. Rev. A 40, 4322 (1989).CrossRefADSGoogle Scholar
  22. 22. cfmGoogle Scholar
  23. 23.\_sheets/e2vtech/ 47-10back.pdfGoogle Scholar
  24. 24. LM\_cameras\_ENG.pdf.Google Scholar
  25. 25.
    C. Raven, Microimaging and Tomography with High Energy Coherent Synchrotron X-Rays (Shaker Verlag, 1998).Google Scholar
  26. 26.
    R.W. Gerchberg, W.O. Saxton, Optik 35, 237 (1972).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • M. El-Ghazaly
    • 1
  • H. Backe
    • 1
  • W. Lauth
    • 1
  • G. Kube
    • 1
  • P. Kunz
    • 1
  • A. Sharafutdinov
    • 1
  • T. Weber
    • 1
  1. 1.Institut für KernphysikUniversität MainzMainzGermany

Personalised recommendations