A study of alpha capture cross-sections of 112Sn

  • N. Özkan
  • G. Efe
  • R. T. Güray
  • A. Palumbo
  • M. Wiescher
  • J. Görres
  • H. -Y. Lee
  • Gy. Gyürky
  • E. Somorjai
  • Zs. Fülöp
Nuclear Physics in Astrophysics II

Abstract.

The 112Sn(α,γ)116Te reaction cross-section has been measured to test the applicability of statistical models, especially NON-SMOKER in the energy range of importance for the astrophysical p-process nucleosynthesis. The measurements were carried out at the Notre Dame FN Tandem Van de Graaff accelerator by means of the activation method. Enriched self-supporting foils were irradiated with alpha beams over the alpha bombarding energy range of 8MeV to 12MeV in 0.5MeV steps. The induced activity was measured with a pair of large volume Ge Clover detectors in close geometry to maximize the detection efficiency. The preliminary results are compared with recent statistical model predictions using the code NON-SMOKER.

PACS.

25.40.Lw Radiative capture 26.30.+k Nucleosynthesis in novae, supernovae, and other explosive environments 82.20.Pm Rate constants, reaction cross sections, and activation energies 

References

  1. 1.
    E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).CrossRefADSGoogle Scholar
  2. 2.
    K. Ito, Prog. Theor. Phys. 26, 990 (1961).CrossRefADSGoogle Scholar
  3. 3.
    D.L. Lambert, Astron. Astrophys. Rev. 3, 201 (1992).CrossRefADSGoogle Scholar
  4. 4.
    R.N. Boyd, Heavy Elements and Related New Phenomena, edited by W. Greiner, R.K. Gupta (World Scientific, 1999) p. 893.Google Scholar
  5. 5.
    S.E. Woosley, W.M. Howard, Astrophys. J. Suppl. 36, 285 (1978).CrossRefADSGoogle Scholar
  6. 6.
    M. Rayet, Astron. Astrophys. 227, 271 (1990).ADSGoogle Scholar
  7. 7.
    M. Arnould, S. Goriely, Phys. Rep. 384, 1 (2003).CrossRefADSGoogle Scholar
  8. 8.
    Gy. Gyürky, Nucl. Phys. A 758, 517c (2005) (preliminary results).CrossRefADSGoogle Scholar
  9. 9.
    N. Özkan, A.St.J. Murphy, R.N. Boyd, A.L. Cole, M. Famiano, R.T. Güray, M. Howard, L. Sahin, J.J. Zack, R. deHaan, J. Görres, M.C. Wiescher, M.S. Islam, T. Rauscher, Nucl. Phys. A 710, 469 (2002).CrossRefADSGoogle Scholar
  10. 10.
    E.V. Verdieck, J.M. Miller, Phys. Rev. 152, 1253 (1967).CrossRefADSGoogle Scholar
  11. 11.
    E. Somorjai, Astron. Astrophys. 333, 1112 (1998).ADSGoogle Scholar
  12. 12.
    T. Rauscher, F.K. Thielemann, At. Data Nucl. Data Tables 79, 427 (2001).CrossRefGoogle Scholar
  13. 13.
    J.P. Greene, private communication.Google Scholar
  14. 14.
    S. Dababneh, N. Patronis, P.A. Assimakopoulos, J. Görres, M. Heil, F. Käppeler, D. Karamanis, S. O'Brien, R. Reifarth, Nucl. Instrum. Methods A 517, 230 (2004).CrossRefADSGoogle Scholar
  15. 15.
    R. Firestone, in Table of Isotopes, edited by V. Shirley (Wiley, New York, 1996).Google Scholar
  16. 16.
    http://www.tubitak.gov.tr.Google Scholar
  17. 17.
    http://www.JINAweb.org.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • N. Özkan
    • 1
  • G. Efe
    • 1
  • R. T. Güray
    • 1
  • A. Palumbo
    • 2
  • M. Wiescher
    • 2
  • J. Görres
    • 2
  • H. -Y. Lee
    • 2
  • Gy. Gyürky
    • 3
  • E. Somorjai
    • 3
  • Zs. Fülöp
    • 3
  1. 1.Department of PhysicsKocaeli UniversityKocaeliTurkey
  2. 2.University of Notre DameNotre DameUSA
  3. 3.Institute of Nuclear Research (ATOMKI)DebrecenHungary

Personalised recommendations