Formation of charmonium states in heavy-ion collisions and thermalization of charm

Quark-Gluon-Plasma Thermalization

Abstract.

We examine the possibility to utilize in-medium charmonium formation in heavy-ion interactions at collider energy as a probe of the properties of the medium. This is possible because the formation process involves recombination of charm quarks which imprints a signal on the resulting normalized transverse momentum distribution containing information about the momentum distribution of the quarks. We have contrasted the transverse momentum spectra of J/ψ, characterized by 〈p T 2〉, which result from the formation process in which the charm quark distributions are taken at opposite limits with regard to thermalization in the medium. The first uses charm quark distributions unchanged from their initial production in a pQCD process, appropriate if their interaction with the medium is negligible. The second uses charm quark distributions which are in complete thermal equilibrium with the transversely expanding medium, appropriate if a very strong interaction between charm quarks and medium exists. We find that the resulting 〈p T 2〉 of the formed J/ψ should allow one to differentiate between these extremes, and that this differentiation is not sensitive to variations in the detailed dynamics of in-medium formation. We include a comparison of predictions of this model with preliminary PHENIX measurements, which indicates compatibility with a substantial fraction of in-medium formation.

PACS.

25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase transitions 12.38.-t Quantum chromodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001) [arXiv:hep-ph/0007323].CrossRefADSGoogle Scholar
  2. 2.
    R.L. Thews, Nucl. Phys. A 702, 341 (2002) [arXiv:hep-ph/0111015]. CrossRefADSGoogle Scholar
  3. 3.
    PHENIX Collaboration (S.S. Adler ), Phys. Rev. C 69, 014901 (2004) [arXiv:nucl-ex/0305030].CrossRefGoogle Scholar
  4. 4.
    R.L. Thews, J. Phys. G 30, S369 (2004) [arXiv:hep-ph/0305316].Google Scholar
  5. 5.
    R.L. Thews, M.L. Mangano, Phys. Rev. C 73, 014904 (2006) [arXiv:nucl-th/0505055]. %%CITATION = NUCL-TH 0505055CrossRefADSGoogle Scholar
  6. 6.
    PHENIX Collaboration (S.S. Adler ), Phys. Rev. Lett. 96, 012304 (2006) [arXiv:nucl-ex/0507032]. %%CITATION = NUCL-EX 0507032CrossRefGoogle Scholar
  7. 7.
    S. Batsouli, S. Kelly, M. Gyulassy, J.L. Nagle, Phys. Lett. B 557, 26 (2003) [arXiv:nucl-th/0212068]. %%CITATION = NUCL-TH 0212068CrossRefADSGoogle Scholar
  8. 8.
    PHENIX Collaboration (H. Pereira Da Costa), arXiv:nucl-ex/0510051. %%CITATION = NUCL-EX 0510051Google Scholar
  9. 9.
    STAR Collaboration (J. Adams ), arXiv:nucl-ex/0407006.Google Scholar
  10. 10.
    PHENIX Collaboration (S.S. Adler ), arXiv:nucl-ex/0409028.Google Scholar
  11. 11.
    P. Braun-Munzinger, J. Stachel, Phys. Lett. B 490, 196 (2000) [arXiv:nucl-th/0007059].CrossRefADSGoogle Scholar
  12. 12.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 571, 36 (2003) [arXiv:nucl-th/0303036]. %%CITATION = NUCL-TH 0303036CrossRefADSGoogle Scholar
  13. 13.
    E.L. Bratkovskaya, A.P. Kostyuk, W. Cassing, H. Stoecker, Phys. Rev. C 69, 054903 (2004) [arXiv:nucl-th/0402042]. %%CITATION = NUCL-TH 0402042CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations