Solving Bethe-Salpeter equation in Minkowski space

  • V. A. Karmanov
  • J. Carbonell
Nuclear Structure and Reactions

Abstract.

We develop a new method of solving the Bethe-Salpeter (BS) equation in Minkowski space. It is based on projecting the BS equation on the light-front (LF) plane and on the Nakanishi integral representation of the BS amplitude. This method is valid for any kernel given by the irreducible Feynman graphs. For massless ladder exchange, our approach reproduces analytically the Wick-Cutkosky equation. For massive ladder exchange, the numerical results coincide with the ones obtained by Wick rotation.

PACS.

03.65.Pm Relativistic wave equations 03.65.Ge Solutions of wave equations: bound states 11.10.St Bound and unstable states; Bethe-Salpeter equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951).CrossRefADSMATHMathSciNetGoogle Scholar
  2. 2.
    N. Nakanishi, Prog. Theor. Phys. Suppl. 43, 1 (1969)MATHMathSciNetGoogle Scholar
  3. 3.
    G.C. Wick, Phys. Rev. 96, 1124 (1954).CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    T. Nieuwenhuis, J.A. Tjon, Few-Body Syst. 21, 167 (1996).CrossRefADSGoogle Scholar
  5. 5.
    G.V. Efimov, Few-Body Syst. 33, 199 (2003).CrossRefADSGoogle Scholar
  6. 6.
    K. Kusaka, A.G. Williams, Phys. Rev. D 51, 7026 (1995)CrossRefADSGoogle Scholar
  7. 7.
    N. Nakanishi, Phys. Rev. 130, 1230 (1963)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S.G. Bondarenko, V.V. Burov, A.M. Molochkov, G.I. Smirnov, H. Toki, Prog. Part. Nucl. Phys. 48, 449 (2002).CrossRefADSGoogle Scholar
  9. 9.
    J.H.O. Sales, T. Frederico, B.V. Carlson, P.U. Sauer, Phys. Rev. C 61, 044003 (2000)CrossRefADSGoogle Scholar
  10. 10.
    J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot, Phys. Rep. 300, 215 (1998).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J. Carbonell, V.A. Karmanov, Cross-ladder effects in Bethe-Salpeter and light-front equations, this issue, p. $\bullet$, hep-th/0505262.Google Scholar
  12. 12.
    R.E. Cutkosky, Phys. Rev. 96, 1135 (1954).CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    M. Mangin-Brinet, J. Carbonell, Phys. Lett. B 474, 237 (2000).CrossRefADSGoogle Scholar
  14. 14.
    V.A. Karmanov, Nucl. Phys. B 166, 378 (1980).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    M. Sawicki, Phys. Rev. D 32, 2666 (1985)CrossRefADSGoogle Scholar
  16. 16.
    G.L. Payne, Models and Methods in Few-Body Physics, edited by L.S. Ferreira, Lect. Notes Phys., Vol. 93 (Springer, Berlin, 1987) p. 64.Google Scholar
  17. 17.
    V.I. Korobov, private communication, 2004.Google Scholar
  18. 18.
    V.A. Karmanov, J. Carbonell, Proceedings of the Workshop ``Light-Cone QCD and Nonperturbative Hadron Physics'', Cairns, Australia, July 7-15, 2005, to be published in Nucl. Phys. B (2006), nucl-th/0510051.Google Scholar
  19. 19.
    S.G. Bondarenko, V.V. Burov, M. Beyer, S.M. Dorkin, Few-Body Syst. 26, 185 (1999).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • V. A. Karmanov
    • 1
  • J. Carbonell
    • 2
  1. 1.Lebedev Physical InstituteMoscowRussia
  2. 2.Laboratoire de Physique Subatomique et CosmologieGrenobleFrance

Personalised recommendations