Advertisement

Nuclear mass form factors from coherent photoproduction of πmesons

Original Article

Abstract.

Data for coherent photoproduction of π0 mesons from nuclei ( 12C, 40Ca, 93Nb, natPb), recently measured with the TAPS detector at the Mainz MAMI accelerator, have been analyzed in view of the mass form factors of the nuclei. The form factors have been extracted in plane-wave approximation of the A(γ,π0)A reaction and corrected for final-state interaction effects with the help of distorted-wave impulse approximations. Nuclear mass rms radii have been calculated from the slope of the form factors for q2 → 0. Furthermore, the Helm model (hard-sphere form factor folded with Gaussian) was used to extract diffraction radii from the zeroes of the form factor and skin thicknesses from the position and height of its first maximum. The diffraction radii from the Helm model agree with the corresponding charge radii obtained from electron scattering experiments within their uncertainties of a few per cent. The rms radii from the slope of the form factors are systematically lower by up to 5% for PWIA and up to 10% for DWIA. Also the skin thicknesses extracted from the Helm model are systematically smaller than their charge counterparts.

PACS.

13.60.Le Meson production 25.20.Lj Photoproduction reactions 21.10.Gv Mass and neutron distributions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W. de Jager, D. de Vries, C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974).ADSGoogle Scholar
  2. 2.
    H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).ADSGoogle Scholar
  3. 3.
    B. Frois, C. Papanicolas, S.E. Williamson, in Modern Topics in Electron Scattering, edited by. B. Frois, I. Sick (World Scientific, Singapore, 1991) p. 352.Google Scholar
  4. 4.
    G. Fricke, At. Data Nucl. Data Tables 60, 177 (1995).CrossRefADSGoogle Scholar
  5. 5.
    J. Friedrich, N. Voegler, Nucl. Phys. A 373, 191 (1982).ADSGoogle Scholar
  6. 6.
    J. Friedrich, N. Voegler, P.-G. Reinhard, Nucl. Phys. A 459, 10 (1986).ADSGoogle Scholar
  7. 7.
    I. Sick, Phys. Rev. Lett. 38, 1259 (1977).CrossRefADSGoogle Scholar
  8. 8.
    S.K. Platchkov, Phys. Rev. C 25, 2318 (1982). CrossRefADSGoogle Scholar
  9. 9.
    C.J. Batty, E. Friedman, H.J. Gils, H. Rebel, Adv. Nucl. Phys. 19, 1 (1989).Google Scholar
  10. 10.
    K. Pomorski, Nucl. Phys. A 624, 349 (1997).ADSGoogle Scholar
  11. 11.
    B. Krusche, Phys. Lett. B 526, 287 (2002).ADSGoogle Scholar
  12. 12.
    R.A. Schrack, J.E. Leiss, S. Penner, Phys. Rev. 127, 1772 (1992).ADSGoogle Scholar
  13. 13.
    H. Alvesleben, Phys. Rev. Lett. 24, 792 (1970).ADSGoogle Scholar
  14. 14.
    D. Drechsel, L. Tiator, S.S. Kamalov, S.N. Yang, Nucl. Phys. A 660, 423 (1999).ADSGoogle Scholar
  15. 15.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).CrossRefGoogle Scholar
  16. 16.
    A.R. Gabler, Nucl. Instrum. Methods A 346, 168 (1994).CrossRefADSGoogle Scholar
  17. 17.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003).CrossRefADSGoogle Scholar
  18. 18.
    B. Krusche, Eur. Phys. J. A 6, 309 (1999).CrossRefADSGoogle Scholar
  19. 19.
    E.M. Darwish, H. Arenhövel, M. Schwamb, Eur. Phys. J. A 16 2003 111.Google Scholar
  20. 20.
    G.F. Chew, Phys. Rev. 106, 1345 (1957).ADSMATHMathSciNetGoogle Scholar
  21. 21.
    D. Drechsel , Nucl. Phys. A 645, 145 (1999).ADSGoogle Scholar
  22. 22.
    B. Krusche, Eur. Phys. J. A 22, 277 (2004).ADSGoogle Scholar
  23. 23.
    B. Krusche, Eur. Phys. J. A 22, 347 (2004).ADSGoogle Scholar
  24. 24.
    B. Krusche Prog. Part. Nucl. Phys. 55, 46 (2005).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of BaselBaselSwitzerland

Personalised recommendations