Advertisement

A new determination of the γπ → ππ anomalous amplitude via πe- → π-e-π0 data

  • I. Giller
  • A. Ocherashvili
  • T. Ebertshäuser
  • M. A. Moinester
  • S. Scherer
Original Article

Abstract.

We discuss the reaction π-e- → π-e-π0 with the purpose of obtaining information on the γπ → ππ anomalous amplitude \( \cal {F}\). We compare a full calculation at \( \cal {O}\)(p6) in chiral perturbation theory and various phenomenological predictions with the existing data of Amendolia et al. By integrating our theory results using Monte Carlo techniques, we obtain σ = 2.05 nb at \( \cal {O}\)(p6) and σ = 2.17 nb after including the dominant electromagnetic correction. Both results are in good agreement with the experimental cross-section of σ = (2.11±0.47) nb. On the basis of the ChPT results one would extract from the experimental cross-section as amplitudes \( \cal {F}\)(0)extr = (9.9±1.1) GeV-3 and \( \cal {F}\)(0)extr = (9.6±1.1) GeV-3, respectively, which have to be compared with the low-energy theorem \( \cal {F}\) = e/(4π2Fπ3) = 9.72GeV-3. We emphasize the need for new data to allow for a comparison of experimental and theoretical distributions and to obtain \( \cal {F}\) with smaller uncertainty.

PACS.

11.30.Rd Chiral symmetries 13.60.Le Meson production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.L. Adler, Phys. Rev. 177, 2426 (1969).CrossRefGoogle Scholar
  2. 2.
    S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517 (1969).CrossRefGoogle Scholar
  3. 3.
    W.A. Bardeen, Phys. Rev. 184, 1848 (1969).CrossRefGoogle Scholar
  4. 4.
    J.S. Bell, R. Jackiw, Nuovo Cimento A 60, 47 (1969).Google Scholar
  5. 5.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971).CrossRefGoogle Scholar
  6. 6.
    E. Witten, Nucl. Phys. B 223, 422 (1983).CrossRefGoogle Scholar
  7. 7.
    S. Weinberg, Physica A 96, 327 (1979)Google Scholar
  8. 8.
    A. Pich, Rep. Prog. Phys. 58, 563 (1995)CrossRefGoogle Scholar
  9. 9.
    S. Scherer, in Advances in Nuclear Physics, edited by J.W. Negele, E.W. Vogt, Vol. 27 (Kluwer Academic/Plenum Publishers, New York, 2003).Google Scholar
  10. 10.
    O. Bär, U.-J. Wiese, Nucl. Phys. B 609, 225 (2001).CrossRefGoogle Scholar
  11. 11.
    R.N. Rogalyov, hep-ph/0202046.Google Scholar
  12. 12.
    B. Borasoy, E. Lipartia, Phys. Rev. D 71, 014027 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Eidelman, Phys. Lett. B 592, 1 (2004).CrossRefGoogle Scholar
  14. 14.
    J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. Lett. 55, 2766 (1985).CrossRefPubMedGoogle Scholar
  15. 15.
    J. Bijnens, A. Bramon, F. Cornet, Phys. Rev. Lett. 61, 1453 (1988).CrossRefPubMedGoogle Scholar
  16. 16.
    B. Moussallam, Phys. Rev. D 51, 4939 (1995).CrossRefGoogle Scholar
  17. 17.
    B. Ananthanarayan, B. Moussallam, JHEP 0205, 052 (2002).CrossRefGoogle Scholar
  18. 18.
    N.F. Nasrallah, Phys. Rev. D 66, 076012 (2002).CrossRefGoogle Scholar
  19. 19.
    J.L. Goity, A.M. Bernstein, B.R. Holstein, Phys. Rev. D 66, 076014 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Gasparian , Conceptional design report A Precision Measurement of the Neutral Pion Lifetime via the Primakoff Effect, url: http://www.jlab.org/primex.Google Scholar
  21. 21.
    M.V. Terent’ev, Phys. Lett. B 38, 419 (1972).CrossRefGoogle Scholar
  22. 22.
    Yu. M. Antipov , Phys. Rev. D 36, 21 (1987).CrossRefGoogle Scholar
  23. 23.
    G. Baum (COMPASS Collaboration), Proposal for a Common Muon and Proton Apparatus for Structure and Spectroscopy, CERN-SPSLC 96-14, SPSC/P 297Google Scholar
  24. 24.
    M.A. Moinester, V. Steiner, Primakoff physics for CERN COMPASS hadron beam: Hadron polarizabilities, hybrid mesons, chiral anomaly, meson radiative transitions, contributed to Charles U./JINR and International U. (Dubna) CERN COMPASS Summer School, August 1997, Prague, Czech Republic, hep-ex/9801011.Google Scholar
  25. 25.
    M.A. Moinester (COMPASS Collaboration), Pion and kaon polarizabilities at CERN COMPASS, contributed to Advanced Study Institute on Symmetries and Spin (Praha SPIN 2002), Prague, Czech Republic, 14-27 July 2002, Czech. J. Phys. 53, B169 (2003), hep-ex/0301024.Google Scholar
  26. 26.
    M.A. Moinester, Hybrid Meson Production via Pion Scattering from the Nuclear Coulomb Field, Proceedings of the ‘‘Future Physics at COMPASS’’ Workshop, Geneva, Switzerland, September 2002, CERN Yellow Report 2004-011, http://wwwcompass.cern.ch/compass/ publications/2004\_yellow/, hep-ex/0301023.Google Scholar
  27. 27.
    J. Bijnens, A. Bramon, F. Cornet, Z. Phys. C 46, 599 (1990).CrossRefGoogle Scholar
  28. 28.
    J. Bijnens, A. Bramon, F. Cornet, Phys. Lett. B 237, 488 (1990).CrossRefGoogle Scholar
  29. 29.
    J. Bijnens, Int. J. Mod. Phys. A 8, 3045 (1993).CrossRefGoogle Scholar
  30. 30.
    D. Issler, SLAC-PUB-4943-REV (1990) (unpublished)Google Scholar
  31. 31.
    T. Ebertshäuser, H.W. Fearing, S. Scherer, Phys. Rev. D 65, 054033 (2002).CrossRefGoogle Scholar
  32. 32.
    J. Bijnens, L. Girlanda, P. Talavera, Eur. Phys. J. C 23, 539 (2002).Google Scholar
  33. 33.
    B.R. Holstein, Phys. Rev. D 53, 4099 (1996).CrossRefGoogle Scholar
  34. 34.
    T. Hannah, Nucl. Phys. B 593, 577 (2001).CrossRefGoogle Scholar
  35. 35.
    L. Ametller, M. Knecht, P. Talavera, Phys. Rev. D 64, 094009 (2001).CrossRefGoogle Scholar
  36. 36.
    T.N. Truong, Phys. Rev. D 65, 056004 (2002). CrossRefGoogle Scholar
  37. 37.
    R. Alkofer, C.D. Roberts, Phys. Lett. B 369, 101 (1996)CrossRefGoogle Scholar
  38. 38.
    M.A. Moinester, in Proceedings of the International Conference On Physics With GeV Particle Beams, 22-25 August 1994, Jülich, Germany, edited by H. Machner, K. Sistemich (World Scientific, Singapore, 1995) hep-ph/9409307.Google Scholar
  39. 39.
    R.A. Miskimen, K. Wang, A. Yegneswaran (spokespersons), Thomas Jefferson National Accelerator Facility Experiment E94015, Study of the Axial Anomaly using the $\gamma \pi^+\to \pi^+\pi^0$ Reaction Near Threshold.Google Scholar
  40. 40.
    B. Asavapibhop, Study of the Axial Anomaly in the $\gamma p \to \pi^+\pi^0 n$ Reaction at Low $t$ Using the CLAS and the Photon Tagger, PhD thesis, University of Massachusetts, Amherst, Massachusetts, 2000, http://www.jlab.org/Hall-B/clas\_g1/anomaly/.Google Scholar
  41. 41.
    R.A. Miskimen, private communication.Google Scholar
  42. 42.
    S.R. Amendolia , Phys. Lett. B 155, 457 (1985).CrossRefGoogle Scholar
  43. 43.
    R. Tenchini (CERN), private communication.Google Scholar
  44. 44.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edition (Cambridge University Press, Cambridge, 1992).Google Scholar
  45. 45.
    J.M. LoSecco, Phys. Rev. D 51, 6572 (1995).CrossRefGoogle Scholar
  46. 46.
    E. Byckling, K. Kajantie, Particle Kinematics (Wiley, New York, 1973).Google Scholar
  47. 47.
    C. Unkmeir, A. Ocherashvili, T. Fuchs, M.A. Moinester, S. Scherer, Phys. Rev. C 65, 015206 (2002).CrossRefGoogle Scholar
  48. 48.
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989).CrossRefGoogle Scholar
  49. 49.
    G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989).CrossRefGoogle Scholar
  50. 50.
    T. Ebertshäuser, Mesonic Chiral Perturbation Theory: Odd Intrinsic Parity Sector, PhD Thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001, http:// archimed.uni-mainz.de/Google Scholar
  51. 51.
    T. Fujiwara, T. Kugo, H. Terao, S. Uehara, K. Yamawaki, Prog. Theor. Phys. 73, 926 (1985).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • I. Giller
    • 1
  • A. Ocherashvili
    • 1
  • T. Ebertshäuser
    • 2
  • M. A. Moinester
    • 1
  • S. Scherer
    • 2
  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations