Shape evolution for Sm isotopes in relativistic mean-field theory

  • J. Meng
  • W. Zhang
  • S. G. Zhou
  • H. Toki
  • L. S. Geng
Original Article

Abstract.

The evolution of shape from the spherical to the axially deformed shapes in the Sm isotopes is investigated microscopically in relativistic mean-field theory. The microscopic and self-consistent quadrupole deformation constrained relativistic mean-field calculations show a clear shape change for the even-even Sm isotopes with N = 82-96. The potential surfaces for 148Sm, 150Sm and 152Sm are found to be relatively flat, which may be the possible critical-point nuclei. By examining the single-particle spectra and nearest-neighbor spacing distribution of the single-particle levels, one finds that the single-particle levels in 148Sm , 150Sm, and 152Sm distribute more uniformly.

PACS.

21.10.-k Properties of nuclei; nuclear energy levels 21.60.Jz Hartree-Fock and random-phase approximations 21.60.Fw Models based on group theory 21.10.Re Collective levels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, England, 1987).Google Scholar
  2. 2.
    A.E.L. Dieperink, O. Scholten, F. Iachello, Phys. Rev. Lett. 44, 1747 (1980).CrossRefGoogle Scholar
  3. 3.
    D.H. Feng, R. Gilmore, S.R. Deans, Phys. Rev. C 23, 1254 (1981).CrossRefGoogle Scholar
  4. 4.
    F. Iachello, N.V. Zamfir, F. Iachello, Phys. Rev. Lett. 81, 1191 (1998).CrossRefGoogle Scholar
  5. 5.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Krücken, Phys. Rev. Lett. 88, 232501 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    M.A. Caprio, Phys. Rev. C 66, 054310 (2002).CrossRefGoogle Scholar
  9. 9.
    P.G. Bizzeti, A.M. Bizzeti-Sona, Phys. Rev. C 66, 031301(R) (2002).CrossRefGoogle Scholar
  10. 10.
    C. Hutter, Phys. Rev. C 67, 054315 (2003).CrossRefGoogle Scholar
  11. 11.
    R.M. Clark, Phys. Rev. C 68, 037301 (2003).CrossRefGoogle Scholar
  12. 12.
    R. Bijker, R.F. Casten, N.V. Zamfir, E.A. McCutchan, Phys. Rev. C 68, 064304 (2003).CrossRefGoogle Scholar
  13. 13.
    C. Fransen, N. Pietralla, A. Linnemann, V. Werner, R. Bijker, Phys. Rev. C 69, 014313 (2004).CrossRefGoogle Scholar
  14. 14.
    D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler, O. Moller, S. Heinze, P. von Brentano, R.F. Casten, Phys. Rev. C 69, 034334 (2004).CrossRefGoogle Scholar
  15. 15.
    R. Bijker, R.F. Casten, N.V. Zamfir, E.A. McCutchan, Phys. Rev. C 69, 059901(E) (2004).CrossRefGoogle Scholar
  16. 16.
    M.A. Caprio, Phys. Rev. C 69, 044307 (2004).CrossRefGoogle Scholar
  17. 17.
    D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Rev. C 70, 024305 (2004).CrossRefGoogle Scholar
  18. 18.
    N. Pietralla, O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004). CrossRefGoogle Scholar
  19. 19.
    P.G. Bizzeti, A.M. Bizzeti-Sona, Eur. Phys. J. A 20, 179 (2004)Google Scholar
  20. 20.
    A. Leviatan, J.N. Ginocchio, Phys. Rev. Lett. 90, 212501 (2003).CrossRefPubMedGoogle Scholar
  21. 21.
    B. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  22. 22.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).CrossRefGoogle Scholar
  23. 23.
    J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996).PubMedGoogle Scholar
  24. 24.
    J. Meng, Nucl. Phys. A 635, 3 (1998).Google Scholar
  25. 25.
    J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998).Google Scholar
  26. 26.
    J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).Google Scholar
  27. 27.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998).Google Scholar
  28. 28.
    J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999).Google Scholar
  29. 29.
    J.N. Ginocchio, Phys. Rep. 315, 231 (1999).Google Scholar
  30. 30.
    S.G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003).PubMedGoogle Scholar
  31. 31.
    Y. Gambhir, P. Ring, A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990).CrossRefGoogle Scholar
  32. 32.
    S.G. Zhou, J. Meng, P. Ring, Phys. Rev. C 68, 034323 (2003).Google Scholar
  33. 33.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 1980).Google Scholar
  34. 34.
    G. Audi, O. Bersillon, J. Blachot, Nucl. Phys. A 624, 1 (1997).CrossRefGoogle Scholar
  35. 35.
    S. Raman, C.W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).Google Scholar
  36. 36.
    P.G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986).Google Scholar
  37. 37.
    M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993).CrossRefGoogle Scholar
  38. 38.
    Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994).CrossRefGoogle Scholar
  39. 39.
    G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • J. Meng
    • 1
    • 2
    • 3
  • W. Zhang
    • 1
  • S. G. Zhou
    • 2
    • 1
    • 3
  • H. Toki
    • 4
  • L. S. Geng
    • 1
    • 4
  1. 1.School of PhysicsPeking UniversityBeijingPRC
  2. 2.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingPRC
  3. 3.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouPRC
  4. 4.Research Center for Nuclear Physics (RCNP)Osaka UniversityOsakaJapan

Personalised recommendations