Skip to main content
Log in

Shape evolution for Sm isotopes in relativistic mean-field theory

  • Original Article
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The evolution of shape from the spherical to the axially deformed shapes in the Sm isotopes is investigated microscopically in relativistic mean-field theory. The microscopic and self-consistent quadrupole deformation constrained relativistic mean-field calculations show a clear shape change for the even-even Sm isotopes with N = 82-96. The potential surfaces for 148Sm, 150Sm and 152Sm are found to be relatively flat, which may be the possible critical-point nuclei. By examining the single-particle spectra and nearest-neighbor spacing distribution of the single-particle levels, one finds that the single-particle levels in 148Sm , 150Sm, and 152Sm distribute more uniformly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, England, 1987).

  2. A.E.L. Dieperink, O. Scholten, F. Iachello, Phys. Rev. Lett. 44, 1747 (1980).

    Article  Google Scholar 

  3. D.H. Feng, R. Gilmore, S.R. Deans, Phys. Rev. C 23, 1254 (1981).

    Article  Google Scholar 

  4. F. Iachello, N.V. Zamfir, F. Iachello, Phys. Rev. Lett. 81, 1191 (1998).

    Article  Google Scholar 

  5. F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

    Article  PubMed  Google Scholar 

  6. R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).

    Article  PubMed  Google Scholar 

  7. R. Krücken, Phys. Rev. Lett. 88, 232501 (2002).

    Article  PubMed  Google Scholar 

  8. M.A. Caprio, Phys. Rev. C 66, 054310 (2002).

    Article  Google Scholar 

  9. P.G. Bizzeti, A.M. Bizzeti-Sona, Phys. Rev. C 66, 031301(R) (2002).

    Article  Google Scholar 

  10. C. Hutter, Phys. Rev. C 67, 054315 (2003).

    Article  Google Scholar 

  11. R.M. Clark, Phys. Rev. C 68, 037301 (2003).

    Article  Google Scholar 

  12. R. Bijker, R.F. Casten, N.V. Zamfir, E.A. McCutchan, Phys. Rev. C 68, 064304 (2003).

    Article  Google Scholar 

  13. C. Fransen, N. Pietralla, A. Linnemann, V. Werner, R. Bijker, Phys. Rev. C 69, 014313 (2004).

    Article  Google Scholar 

  14. D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler, O. Moller, S. Heinze, P. von Brentano, R.F. Casten, Phys. Rev. C 69, 034334 (2004).

    Article  Google Scholar 

  15. R. Bijker, R.F. Casten, N.V. Zamfir, E.A. McCutchan, Phys. Rev. C 69, 059901(E) (2004).

    Article  Google Scholar 

  16. M.A. Caprio, Phys. Rev. C 69, 044307 (2004).

    Article  Google Scholar 

  17. D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Rev. C 70, 024305 (2004).

    Article  Google Scholar 

  18. N. Pietralla, O.M. Gorbachenko, Phys. Rev. C 70, 011304(R) (2004).

    Article  Google Scholar 

  19. P.G. Bizzeti, A.M. Bizzeti-Sona, Eur. Phys. J. A 20, 179 (2004)

    Google Scholar 

  20. A. Leviatan, J.N. Ginocchio, Phys. Rev. Lett. 90, 212501 (2003).

    Article  PubMed  Google Scholar 

  21. B. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  22. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  Google Scholar 

  23. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996).

    PubMed  Google Scholar 

  24. J. Meng, Nucl. Phys. A 635, 3 (1998).

    Google Scholar 

  25. J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998).

    Google Scholar 

  26. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).

    Google Scholar 

  27. J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998).

  28. J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999).

    Google Scholar 

  29. J.N. Ginocchio, Phys. Rep. 315, 231 (1999).

    Google Scholar 

  30. S.G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003).

    PubMed  Google Scholar 

  31. Y. Gambhir, P. Ring, A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990).

    Article  Google Scholar 

  32. S.G. Zhou, J. Meng, P. Ring, Phys. Rev. C 68, 034323 (2003).

    Google Scholar 

  33. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, 1980).

  34. G. Audi, O. Bersillon, J. Blachot, Nucl. Phys. A 624, 1 (1997).

    Article  Google Scholar 

  35. S. Raman, C.W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Google Scholar 

  36. P.G. Reinhard, M. Rufa, J. Maruhn, W. Greiner, J. Friedrich, Z. Phys. A 323, 13 (1986).

    Google Scholar 

  37. M.M. Sharma, M.A. Nagarajan, P. Ring, Phys. Lett. B 312, 377 (1993).

    Article  Google Scholar 

  38. Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994).

    Article  Google Scholar 

  39. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Meng.

Additional information

G. Orlandini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Zhang, W., Zhou, S.G. et al. Shape evolution for Sm isotopes in relativistic mean-field theory. Eur. Phys. J. A 25, 23–27 (2005). https://doi.org/10.1140/epja/i2005-10066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10066-6

PACS.

Navigation