Skip to main content

Advertisement

Log in

Saturation of nuclear matter and realistic interactions

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

In this communication we study symmetric nuclear matter for the Brueckner-Hartree-Fock approach, using two realistic nucleon-nucleon interactions (CD-Bonn and Bonn C). The single-particle energy is calculated self-consistently from the real on-shell self-energy. The relation between different expressions for the pressure is studied in cold nuclear matter. For best calculations the self-energy is calculated with the inclusion of hole-hole (hh) propagation. The effects of hh contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Using two different methods, namely, G-matrix and bare potential, the hh term is calculated. We found that using G-matrix brought about non-negligible contribution to the self-energy, but this difference is very small and can be ignored if compared with the large contribution coming from particle-particle term. The contribution of the hh term leads to a repulsive contribution to the Fermi energy which increases with density. For extended Brueckner-Hartree-Fock approach the Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Köhler, Phys. Rev. C 46, 1687 (1992).

    Article  Google Scholar 

  2. H.S. Köhler, R. Malfliet, Phys. Rev. C 48, 1034 (1993).

    Article  Google Scholar 

  3. T. Frick, Kh. Gad, H. Müther, P. Czerski, Phys. Rev. C 65, 034321 (2002).

    Article  Google Scholar 

  4. Kh. Gad, H. Müther, Phys. Rev. C 66, 044301 (2002).

    Article  Google Scholar 

  5. A. Ramos, A. Polls, W.H. Dickhoff, Nucl. Phys. A 503, 1 (1989).

    Article  Google Scholar 

  6. B.E. Vonderfecht, W.H. Dickhoff, A. Polls, A. Ramos, Nucl. Phys. A 555, 1 (1993).

    Article  Google Scholar 

  7. P. Bożek, Nucl. Phys. A 657, 187 (1999).

    Article  Google Scholar 

  8. J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rep. 25, 83 (1976).

    Article  Google Scholar 

  9. M. Baldo, F. Bombaci, G. Giansiracusa, U. Lombardo, C. Mahaux, R. Sartor, Phys. Rev. C 41, 1748 (1990).

    Article  Google Scholar 

  10. F. de Jong, R. Malfliet, Phys. Rev. C 44, 998 (1991).

    Article  Google Scholar 

  11. N.M. Hugenholtz, L. Van Hove, Physica 24, 363 (1958).

    MATH  Google Scholar 

  12. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  MATH  Google Scholar 

  13. G. Baym, Phys. Rev. 127, 1392 (1962).

    Article  Google Scholar 

  14. V.F. Weisskopf, Nucl. Phys. 3, 423 (1957).

    Article  MATH  Google Scholar 

  15. H.A. Bethe, Phys. Rev. 103, 1535 (1956).

    Article  Google Scholar 

  16. P. Bożek, P. Czerski, Eur. Phys. J. A 11, 271 (2001).

    Article  Google Scholar 

  17. P. Bożek, Eur. Phys. J. A 15, 325 (2002).

    Article  Google Scholar 

  18. P. Bożek, P. Czerski, Acta. Phys. Pol. B 34, 2759 (2003).

    Google Scholar 

  19. H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998).

    Article  Google Scholar 

  20. R.B. Wiringa, R.A. Smith, T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984).

    Article  Google Scholar 

  21. B.D. Day, R.B. Wiringa, Phys. Rev. C 32, 1057 (1985).

    Article  Google Scholar 

  22. Y. Dewulf, W.H. Dickhoff, D. Van Neck, E.R. Stoddard, M. Waroquier, Phys. Rev. Lett. 90, 152501 (2003).

    Article  Google Scholar 

  23. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).

    Article  Google Scholar 

  24. T. Frick, PhD Thesis, Tübingen University, (2004), unpublished.

  25. E. Schiller, H. Müther, P. Czerski, Phys. Rev. C 59, 2934 (1999)

    Article  Google Scholar 

  26. K. Suzuki, R. Okamato, M. Kohno, S. Nagata, Nucl. Phys. A 665, 92 (2000).

    Article  Google Scholar 

  27. M.I. Haftel, F. Tabakin, Nucl. Phys. A 158, 1 (1970).

    Article  Google Scholar 

  28. T. Cheon, E.F. Redish, Phys. Rev. C 39, 331 (1989).

    Article  Google Scholar 

  29. F. Sammarruca, X. Meng, E.J. Stephenson, Phys. Rev. C 62, 014614 (2000).

    Article  Google Scholar 

  30. P. Grange, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987).

    Article  Google Scholar 

  31. C. Mahaux, R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

    Google Scholar 

  32. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).

  33. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

    Google Scholar 

  34. F. Coester, S. Cohen, B. Day, C.M. Vincent, Phys. Rev. C 1, 769 (1970).

    Article  Google Scholar 

  35. J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl. Phys. A 591, 435 (1995).

    Article  Google Scholar 

  36. Y. Dewulf, D. Van Neck, M. Waroquier, Phys. Rev. C 65, 054316 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Gad.

Additional information

A. Schäfer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gad, K. Saturation of nuclear matter and realistic interactions. Eur. Phys. J. A 22, 405–410 (2004). https://doi.org/10.1140/epja/i2004-10059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2004-10059-y

PACS.

Navigation