Saturation of nuclear matter and realistic interactions

Article

Abstract.

In this communication we study symmetric nuclear matter for the Brueckner-Hartree-Fock approach, using two realistic nucleon-nucleon interactions (CD-Bonn and Bonn C). The single-particle energy is calculated self-consistently from the real on-shell self-energy. The relation between different expressions for the pressure is studied in cold nuclear matter. For best calculations the self-energy is calculated with the inclusion of hole-hole (hh) propagation. The effects of hh contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Using two different methods, namely, G-matrix and bare potential, the hh term is calculated. We found that using G-matrix brought about non-negligible contribution to the self-energy, but this difference is very small and can be ignored if compared with the large contribution coming from particle-particle term. The contribution of the hh term leads to a repulsive contribution to the Fermi energy which increases with density. For extended Brueckner-Hartree-Fock approach the Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove relation.

PACS.

21.65.+f Nuclear matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Köhler, Phys. Rev. C 46, 1687 (1992).CrossRefGoogle Scholar
  2. 2.
    H.S. Köhler, R. Malfliet, Phys. Rev. C 48, 1034 (1993).CrossRefGoogle Scholar
  3. 3.
    T. Frick, Kh. Gad, H. Müther, P. Czerski, Phys. Rev. C 65, 034321 (2002).CrossRefGoogle Scholar
  4. 4.
    Kh. Gad, H. Müther, Phys. Rev. C 66, 044301 (2002).CrossRefGoogle Scholar
  5. 5.
    A. Ramos, A. Polls, W.H. Dickhoff, Nucl. Phys. A 503, 1 (1989).CrossRefGoogle Scholar
  6. 6.
    B.E. Vonderfecht, W.H. Dickhoff, A. Polls, A. Ramos, Nucl. Phys. A 555, 1 (1993).CrossRefGoogle Scholar
  7. 7.
    P. Bożek, Nucl. Phys. A 657, 187 (1999).CrossRefGoogle Scholar
  8. 8.
    J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rep. 25, 83 (1976).CrossRefGoogle Scholar
  9. 9.
    M. Baldo, F. Bombaci, G. Giansiracusa, U. Lombardo, C. Mahaux, R. Sartor, Phys. Rev. C 41, 1748 (1990).CrossRefGoogle Scholar
  10. 10.
    F. de Jong, R. Malfliet, Phys. Rev. C 44, 998 (1991).CrossRefGoogle Scholar
  11. 11.
    N.M. Hugenholtz, L. Van Hove, Physica 24, 363 (1958). MATHGoogle Scholar
  12. 12.
    J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960).CrossRefMATHGoogle Scholar
  13. 13.
    G. Baym, Phys. Rev. 127, 1392 (1962).CrossRefGoogle Scholar
  14. 14.
    V.F. Weisskopf, Nucl. Phys. 3, 423 (1957).CrossRefMATHGoogle Scholar
  15. 15.
    H.A. Bethe, Phys. Rev. 103, 1535 (1956).CrossRefGoogle Scholar
  16. 16.
    P. Bożek, P. Czerski, Eur. Phys. J. A 11, 271 (2001).CrossRefGoogle Scholar
  17. 17.
    P. Bożek, Eur. Phys. J. A 15, 325 (2002).CrossRefGoogle Scholar
  18. 18.
    P. Bożek, P. Czerski, Acta. Phys. Pol. B 34, 2759 (2003).Google Scholar
  19. 19.
    H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998).CrossRefGoogle Scholar
  20. 20.
    R.B. Wiringa, R.A. Smith, T.L. Ainsworth, Phys. Rev. C 29, 1207 (1984).CrossRefGoogle Scholar
  21. 21.
    B.D. Day, R.B. Wiringa, Phys. Rev. C 32, 1057 (1985).CrossRefGoogle Scholar
  22. 22.
    Y. Dewulf, W.H. Dickhoff, D. Van Neck, E.R. Stoddard, M. Waroquier, Phys. Rev. Lett. 90, 152501 (2003).CrossRefGoogle Scholar
  23. 23.
    W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Frick, PhD Thesis, Tübingen University, (2004), unpublished.Google Scholar
  25. 25.
    E. Schiller, H. Müther, P. Czerski, Phys. Rev. C 59, 2934 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Suzuki, R. Okamato, M. Kohno, S. Nagata, Nucl. Phys. A 665, 92 (2000).CrossRefGoogle Scholar
  27. 27.
    M.I. Haftel, F. Tabakin, Nucl. Phys. A 158, 1 (1970).CrossRefGoogle Scholar
  28. 28.
    T. Cheon, E.F. Redish, Phys. Rev. C 39, 331 (1989).CrossRefGoogle Scholar
  29. 29.
    F. Sammarruca, X. Meng, E.J. Stephenson, Phys. Rev. C 62, 014614 (2000).CrossRefGoogle Scholar
  30. 30.
    P. Grange, J. Cugnon, A. Lejeune, Nucl. Phys. A 473, 365 (1987).CrossRefGoogle Scholar
  31. 31.
    C. Mahaux, R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).Google Scholar
  32. 32.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).Google Scholar
  33. 33.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).Google Scholar
  34. 34.
    F. Coester, S. Cohen, B. Day, C.M. Vincent, Phys. Rev. C 1, 769 (1970).CrossRefGoogle Scholar
  35. 35.
    J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl. Phys. A 591, 435 (1995).CrossRefGoogle Scholar
  36. 36.
    Y. Dewulf, D. Van Neck, M. Waroquier, Phys. Rev. C 65, 054316 (2002).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSouth Valley UniversitySohagEgypt

Personalised recommendations