Non-extensive resonant reaction rates in astrophysical plasmas

Article

Abstract.

We study two different physical scenarios of thermonuclear reactions in stellar plasmas proceeding through a narrow resonance at low energy or through the low-energy wing of a wide resonance at high energy. Correspondingly, we derive two approximate analytical formulae in order to calculate thermonuclear resonant reaction rates inside very coupled and non-ideal astrophysical plasmas in which non-extensive effects are likely to arise. Our results are presented as simple first-order corrective factors that generalize the well-known classical rates obtained in the framework of Maxwell-Boltzmann statistical mechanics. As a possible application of our results, we calculate the dependence of the total corrective factor with respect to the energy at which the resonance is located, in an extremely dense and non-ideal carbon plasma.

Keywords

Corrective Factor Statistical Mechanic Wide Resonance Analytical Formula Narrow Resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Cussons, K. Langanke, T. Liolios, Eur. Phys. J. A 15, 291 (2002).CrossRefGoogle Scholar
  2. 2.
    E.E. Salpeter, H.M. Van Horn, Astrophys. J. 155, 183 (1969).CrossRefGoogle Scholar
  3. 3.
    N. Itoh, N. Tomizawa, S. Wanajo, S. Nozawa, Astrophys. J. 586, 1436 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Balberg, S. Shapiro, The properties of matter in white dwarfs and neutron stars, in Handbook of Elastic Properties, edited by H. Bass, V. Keppens, M. Levy, R. Raspet (Academic Press, New York, 2003).Google Scholar
  5. 5.
    A. Lavagno, P. Quarati, Phys. Lett. B 498, 47 (2001); Chaos, Solitons, Fractals 13, 569 (2002).CrossRefGoogle Scholar
  6. 6.
    G. Kaniadakis, A. Lavagno, M. Lissia, P. Quarati, Physica A 261, 359 (1998).CrossRefGoogle Scholar
  7. 7.
    E.G. Adelberger et al. , Rev. Mod. Phys. 70, 4 (1998).Google Scholar
  8. 8.
    D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago Press, Chicago, 1968).Google Scholar
  9. 9.
    LUNA Collaboration (A. Formicola et al. ), nucl-ex/0312015.Google Scholar
  10. 10.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (Chicago Press, Chicago, 1988).Google Scholar
  11. 11.
    M.S. Hussein, M. Ueda, A.J. Sargeant, M.P. Pato, nucl-th/0307083.Google Scholar
  12. 12.
    D.D. Clayton, E. Dwek, M.J. Newman, R.J. Talbot jr., Astrophys. J. 199, 194 (1975).Google Scholar
  13. 13.
    M. Coraddu et al. , Braz. J. Phys. 29, 153 (1999).Google Scholar
  14. 14.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Dover, New York, 1991).Google Scholar
  15. 15.
    C. Tsallis, Braz. J. Phys. 29, 1 (1999).Google Scholar
  16. 16.
    M. Gell-Mann, C. Tsallis (Editors), Non-extensive Entropy - Interdisciplinary Applications (Oxford University Press, Oxford, 2003).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Dipartimento di FisicaPolitecnico di TorinoTorinoItaly
  2. 2.Sezione di TorinoINFNTorinoItaly
  3. 3.Sezione di CagliariINFNMonserrato (Cagliari)Italy

Personalised recommendations