Advertisement

Experimental evidence for tunneling in the decay of superdeformed states

  • K. Lagergren
  • B. Cederwall
Letter

Abstract.

A systematic study of the depopulation of superdeformed rotational bands in neutron-deficient \(A\approx 80\mbox{--}90\) nuclei has been performed. We observed a correlation between the rotational frequency at which the decay out of the superdeformed bands takes place and the difference between the transition quadrupole moments of states in the superdeformed bands and high-lying states with “normal” deformation. The observation may constitute direct experimental evidence that the commonly adopted tunneling picture for the decay of superdeformed states is valid.

Keywords

Experimental Evidence Systematic Study Rotational Frequency Quadrupole Moment Rotational Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Twin et al. , Phys. Rev. Lett. 57, 811 (1986).CrossRefGoogle Scholar
  2. 2.
    T.L. Khoo et al. , Phys. Rev. Lett 76, 1583 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Lopez-Martens et al. , Phys. Lett. B 380, 18 (1999).Google Scholar
  4. 4.
    A. Lopez-Martens et al. , Phys. Rev. Lett. 77, 1707 (1996).CrossRefGoogle Scholar
  5. 5.
    T. Lauritsen et al. , Phys. Rev. Lett. 88, 042501 (2002).CrossRefGoogle Scholar
  6. 6.
    T. Døssing, E. Vigezzi, R.A. Broglia, Phys. Lett. B 249, 163 (1990).CrossRefGoogle Scholar
  7. 7.
    S. Åberg, Phys. Rev. Lett. 82, 299 (1999).CrossRefGoogle Scholar
  8. 8.
    M.A. Deleplanque et al. , Phys. Rev. C 52, R2302 (1995).Google Scholar
  9. 9.
    T. Døssing et al. , Phys. Rev. Lett. 75, 1276 (1995).CrossRefGoogle Scholar
  10. 10.
    F. Lerma et al. , Phys. Rev. C 67, 044310 (2003).CrossRefGoogle Scholar
  11. 11.
    D.G. Sarantites et al. , Phys. Rev. C 57, R1 (1998).Google Scholar
  12. 12.
    D.R. LaFosse et al. , Phys. Rev. Lett. 78, 614 (1997).CrossRefGoogle Scholar
  13. 13.
    K. Lagergren et al. , Phys. Rev. C 68, 064309 (2003).CrossRefGoogle Scholar
  14. 14.
    R.F. Davie et al. , Nucl. Phys. A 463, 683 (1987).CrossRefGoogle Scholar
  15. 15.
    E.F. Moore et al. , Phys. Rev. C 38, 696 (1988).CrossRefGoogle Scholar
  16. 16.
    S.L. Tabor et al. , Phys. Rev. C 49, 730 (1994).CrossRefGoogle Scholar
  17. 17.
    D. Bucurescu et al. , J. Phys G 7, 399 (1981).CrossRefGoogle Scholar
  18. 18.
    S.D. Paul et al. , Phys. Rev. C 51, 2959 (1995).CrossRefGoogle Scholar
  19. 19.
    T.D. Johnson et al. , Phys. Rev. C 55, 1108 (1997).CrossRefGoogle Scholar
  20. 20.
    S. Chattopadhyay et al. , Phys. Rev. C 49, 116 (1994).CrossRefGoogle Scholar
  21. 21.
    W. Fieber et al. , Z. Phys. A 332, 363 (1989).Google Scholar
  22. 22.
    S. Chattopadhyay, H.C. Jain, J.A. Sheikh, Phys. Rev. C 53, 1001 (1996).CrossRefGoogle Scholar
  23. 23.
    R.A. Kaye et al. , Phys. Rev. C 57, 2189 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations