Pion radii in the nonlocal chiral quark model

Article

Abstract.

The electromagnetic radius of a charged pion and the transition radius of a neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the vector meson contributions to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu-Jona-Lasinio model. The form factor for the process \(\gamma^*\pi^ + \pi^-\) is calculated for -1 GeV2< q 2 < 1.6 GeV2. Our results are in satisfactory agreement with experimental data.

Keywords

Experimental Data Form Factor Satisfactory Agreement Vector Meson Quark Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.E. Dorokhov, A.E. Radzhabov, M.K. Volkov, Phys. At. Nucl. 67, (2004).Google Scholar
  2. 2.
    A.E. Radzhabov, M.K. Volkov, Part. and Nucl., Lett. 1[118], 5 (2004); Eur. Phys. J. A 19, 341 (2004).Google Scholar
  3. 3.
    R.D. Bowler, M.C. Birse, Nucl. Phys. A 582, 655 (1995); R.S. Plant, M.C. Birse, Nucl. Phys. A 628, 607 (1998).CrossRefGoogle Scholar
  4. 4.
    A.E. Dorokhov, L. Tomio, Phys. Rev. D 62, 014016 (2000), arXiv:hep-ph/9803329; I.V. Anikin, A.E. Dorokhov, L. Tomio, Phys. Part. Nucl. 31, 509 (2000).CrossRefGoogle Scholar
  5. 5.
    A.E. Dorokhov, W. Broniowski, Phys. Rev. D 65, 094007 (2002).CrossRefGoogle Scholar
  6. 6.
    M.K. Volkov, Sov. J. Part. Nuclei 17, 186 (1986).Google Scholar
  7. 7.
    M.K. Volkov, D. Ebert, Yad. Fiz. 36, 1265 (1982); M.K. Volkov, Ann. Phys. (N.Y.) 157, 282 (1984); D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986); U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991); S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).Google Scholar
  8. 8.
    E.V. Shuryak, Nucl. Phys. B 203, 93 (1982).CrossRefGoogle Scholar
  9. 9.
    D. Diakonov, V.Y. Petrov, Nucl. Phys. B 245, 259 (1984); 272, 457 (1986).CrossRefGoogle Scholar
  10. 10.
    A.E. Dorokhov, N.I. Kochelev, JINR-E2-86-224; A.E. Dorokhov, Y.A. Zubov, N.I. Kochelev, Sov. J. Part. Nucl. 23, 522 (1992).Google Scholar
  11. 11.
    A.E. Dorokhov, W. Broniowski, Eur. Phys. J. C 32, 79 (2003), arXiv:hep-ph/0305037.CrossRefGoogle Scholar
  12. 12.
    I.V. Anikin, A.E. Dorokhov, L. Tomio, Phys. Lett. B 475, 361 (2000); A.E. Dorokhov, JETP Lett. 77, 63 (2003) (Pis’ma Zh. Eksp. Teor. Fiz. 77, 68 (2003)).CrossRefGoogle Scholar
  13. 13.
    S.B. Gerasimov, Yad. Fiz. 29, 513 (1979).Google Scholar
  14. 14.
    H.J. Hippe, S.P. Klevansky, Phys. Rev. C 52, 2172 (1995).CrossRefGoogle Scholar
  15. 15.
    M.K. Volkov, Phys. At. Nucl. 60, 997 (1997).Google Scholar
  16. 16.
    R. Tarrach, Z. Phys. C 2, 221 (1979).Google Scholar
  17. 17.
    V. Bernard, U.G. Meissner, Phys. Rev. Lett. 61, 2296 (1988); 61, 2973 (1988)(E).CrossRefGoogle Scholar
  18. 18.
    M. Lutz, W. Weise, Nucl. Phys. A 518, 156 (1990).CrossRefGoogle Scholar
  19. 19.
    J. Terning, Phys. Rev. D 44, 887 (1991).CrossRefGoogle Scholar
  20. 20.
    G.V. Efimov, M.A. Ivanov, The Quark Confinement Model of Hadrons (IOP, Bristol, 1993).Google Scholar
  21. 21.
    A.E. Dorokhov, arXiv:hep-ph/0212252.Google Scholar
  22. 22.
    Particle Data Group Collaboration (K. Hagiwara et al. ), Phys. Rev. D 66, 010001 (2002).CrossRefGoogle Scholar
  23. 23.
    L.M. Barkov et al. , Nucl. Phys. B 256, 365 (1985).CrossRefGoogle Scholar
  24. 24.
    CMD-2 Collaboration (R.R. Akhmetshin et al. ), Phys. Lett. B 527, 161 (2002); Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578, 285 (2004), arXiv:hep-ex/0308008.CrossRefGoogle Scholar
  25. 25.
    NA7 Collaboration (S.R. Amendolia et al. ), Nucl. Phys. B 277, 168 (1986).CrossRefGoogle Scholar
  26. 26.
    The Jefferson Lab F(pi) Collaboration (J. Volmer et al. ), Phys. Rev. Lett. 86, 1713 (2001).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • A. E. Dorokhov
    • 1
  • A. E. Radzhabov
    • 1
  • M. K. Volkov
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations