Advertisement

Improving the convergence of the chiral expansion for nuclear forces - II: Low phases and the deuteron

  • E. Epelbaum
  • W. Glöckle
  • U.-G. Meißner
Article

Abstract.

Recently, we have proposed a new cut-off scheme for pion loop integrals in the two-pion exchange potential. This method allows for a consistent implementation of constraints from pion-nucleon scattering and has been successfully applied to peripheral nucleon-nucleon partial waves. We now consider low partial waves in the non-perturbative regime, where the regularized Lippmann-Schwinger equation has to be solved in order to generate the bound and scattering states. We observe an improved description of most of the phase shifts when going from next-to- to next-to-next-to-leading order in the chiral expansion. We also find a good description of the deuteron properties. In addition, the new cut-off scheme allows to avoid the presence of unphysical deeply bound states. We discuss the cut-off dependence of the four-nucleon low-energy constants and show that their numerical values can be understood in terms of resonance saturation. This connects the effective field theory approach to boson exchange phenomenology.

Keywords

Partial Wave Effective Field Theory Loop Integral Chiral Expansion Resonance Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Epelbaum, W. Glöckle, U.-G. Meißner, Eur. Phys. J. A 19, 125 (2003).Google Scholar
  2. 2.
    N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997).CrossRefGoogle Scholar
  3. 3.
    P. Büttiker, U.-G. Meißner, Nucl. Phys. A 668, 97 (2000).CrossRefGoogle Scholar
  4. 4.
    D.R. Entem, R. Machleidt, Phys. Rev. C 66, 014002 (2002).CrossRefGoogle Scholar
  5. 5.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, in preparation.Google Scholar
  6. 6.
    V. Bernard, Th.R. Hemmert, U.-G. Meißner, hep-ph/0307115.Google Scholar
  7. 7.
    M.C.M. Rentmeester, R.G.E. Timmermans, J.J. de Swart, Phys. Rev. C 67, 044001 (2003).CrossRefGoogle Scholar
  8. 8.
    E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000).CrossRefGoogle Scholar
  9. 9.
    P. Lepage, nucl-th/9706029.Google Scholar
  10. 10.
    J. Gegelia, G. Japaridze, Phys. Lett. B 517, 476 (2001).CrossRefGoogle Scholar
  11. 11.
    E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witala, Eur. Phys. J. A 15, 543 (2002).CrossRefGoogle Scholar
  12. 12.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, Ch. Elster, Phys. Rev. C 65, 044001 (2002).CrossRefGoogle Scholar
  13. 13.
    V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, J.J. de Swart, Phys. Rev. C 48, 792 (1993).CrossRefGoogle Scholar
  14. 14.
    M.C.M. Rentmeester, private communication (1999).Google Scholar
  15. 15.
    J.J. de Swart, C.P.F. Terheggen, V.G.J. Stoks, nucl-th/9509032.Google Scholar
  16. 16.
    T.D. Cohen, J.M. Hansen, Phys. Rev. C 59, 13 (1999).CrossRefGoogle Scholar
  17. 17.
    D. Phillips, AIP Conf. Proc. 603, 149 (2001).CrossRefGoogle Scholar
  18. 18.
    M. Walzl, U.-G. Meißner, Phys. Lett. B 513, 37 (2001).CrossRefGoogle Scholar
  19. 19.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).Google Scholar
  20. 20.
    V.G.J. Stoks, Phys. Rev. C 49, 2950 (1994).CrossRefGoogle Scholar
  21. 21.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999).CrossRefGoogle Scholar
  22. 22.
    D. R. Entem, R. Machleidt, arXiv:nucl-th/0304018.Google Scholar
  23. 23.
    E. Epelbaum, U.-G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2003).CrossRefMATHGoogle Scholar
  24. 24.
    S. R. Beane, M. J. Savage, Nucl. Phys. A 713, 148 (2003).CrossRefGoogle Scholar
  25. 25.
    S. R. Beane, M. J. Savage, Nucl. Phys. A 717, 91 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)Universität BonnBonnGermany
  3. 3.Jefferson LaboratoryNewport NewsUSA

Personalised recommendations