Gamma-ray feeding and decay of superdeformed states

  • A. Lopez-Martens
  • T. Døssing
  • T. L. Khoo
  • B. Herskind
  • T. Lauristen
  • M. Matsuo
  • K. Yoshida
  • A. Korichi
  • F. Hannachi
  • I. Ahmad
  • H. Amro
  • G. de Angelis
  • D. Bazzacco
  • C. Beausang
  • E. Bouchez
  • P. Bringel
  • I. J. Calderin
  • M. P. Carpenter
  • S. M. Fischer
  • G. Hackman
  • K. Hauschild
  • H. Hübel
  • A. Hurstel
  • R. V. F. Janssens
  • F. G. Kondev
  • W. Korten
  • T. Kröll
  • Y. Le Coz
  • N. Marginean
  • R. Menegazzo
  • E. Mergel
  • D. Napoli
  • N. Nenoff
  • S. Neumann
  • A. Neusser
  • D. Nisius
  • G. Mukherjee
  • M. Rejmund
  • D. Rossbach
  • C. Rossi Alvarez
  • C. Schück
  • G. Schonwasser
  • A. K. Singh
  • Ch Theisen
  • Ch Vieu
  • C. Ur
Article

Abstract.

We report on four recent results concerning the population and the decay of superdeformed states, namely the structure of excited superdeformed states in 194Hg, the search for fine structure of the last superdeformed transitions in 194Pb, the primary decay-out strength analysis in 194Hg and, as a consequence of this, the possibility of using the decay-out as a tool to study order-to-chaos properties of normally deformed states.

Keywords

Fine Structure Recent Result Strength Analysis Superdeformed State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Leoni et al. , Phys. Rev. Lett. 76, 3281 (1996).CrossRefGoogle Scholar
  2. 2.
    S. Leoni et al. , Phys. Lett. B 353, 179 (1995).CrossRefGoogle Scholar
  3. 3.
    S. Leoni et al. , Phys. Lett. B 409, 71 (1997).CrossRefGoogle Scholar
  4. 4.
    S. Leoni et al. , Phys. Lett B 498, 137 (2001).CrossRefGoogle Scholar
  5. 5.
    T.L. Khoo et al. , Phys. Rev. Lett. 76, 1583 (1996).CrossRefGoogle Scholar
  6. 6.
    O. Andersen et al. , Phys. Rev. Lett. 43, 687 (1979).CrossRefGoogle Scholar
  7. 7.
    K. Yoshida, M. Matsuo, Nucl. Phys. A 636, 169 (1998).CrossRefGoogle Scholar
  8. 8.
    B. Mottelson, Nucl. Phys. A 557, 717c (1992).CrossRefGoogle Scholar
  9. 9.
    D, Bazzacco et al. , Phys. Rev. C 49, R2281 (1994).Google Scholar
  10. 10.
    J. Domscheit et al. , Nucl. Phys. A 660, 381 (1999).CrossRefGoogle Scholar
  11. 11.
    A. Lopez-Martens et al. , Phys. Lett. B 380, 18 (1996).CrossRefGoogle Scholar
  12. 12.
    K. Hauschild et al. , Phys. Rev. C 55, 2819 (1997).CrossRefGoogle Scholar
  13. 13.
    T. Lauritsen et al. , Phys. Rev. Lett. 88, 042501 (2002).CrossRefGoogle Scholar
  14. 14.
    R.G. Henry et al. , Phys. Rev. Lett. 73, 777 (1994).CrossRefGoogle Scholar
  15. 15.
    T. Lauristen et al. , Phys. Rev. C 62, 44316 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Lopez-Martens et al. , Phys. Rev. Lett. 77, 1707 (1996).CrossRefGoogle Scholar
  17. 17.
    T. Døssing et al. , Phys. Rev. Lett. 75, 1276 (1995).CrossRefGoogle Scholar
  18. 18.
    T.L. Khoo, Proceedings from the Institute for Nuclear Theory on Tunneling in Complex Systems, Seattle, WA, 1998, edited by Steven Tomsovic, Vol. 5 (World Scientific, Singapore, 1998) p. 229.Google Scholar
  19. 19.
    H. Jackson et al. , Phys. Rev. Lett. 17, 656 (1966).CrossRefGoogle Scholar
  20. 20.
    C. Porter, R. Thomas, Phys. Rev. 104, 483 (1956).CrossRefMATHGoogle Scholar
  21. 21.
    E. Wigner, Proc. Cambridge Philos. Soc. 47, 790 (1951).MATHGoogle Scholar
  22. 22.
    A. Lopez-Martens et al. , Nucl. Phys. A 647, 217 (1999).CrossRefGoogle Scholar
  23. 23.
    R.U. Haq et al. , Phys. Rev. Lett. 48, 1086 (1982).CrossRefGoogle Scholar
  24. 24.
    J. Garrett et al. , Phys. Lett. B 392, 24 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Raman et al. , Phys. Rev. C 43, 521 (1991).CrossRefGoogle Scholar
  26. 26.
    G. Mitchell et al. , Phys. Rev. Lett. 61, 1473 (1988).CrossRefGoogle Scholar
  27. 27.
    S. Aberg, Phys. Rev. Lett. 82, 299 (1999).CrossRefGoogle Scholar
  28. 28.
    P. Bonche et al. , Nucl. Phys. A 519, 509 (1990).CrossRefGoogle Scholar
  29. 29.
    J. Meyer et al. , Nucl. Phys. A 533, 307 (1991).CrossRefGoogle Scholar
  30. 30.
    J. Meyer et al. , Nucl. Phys. A 588, 597 (1995).CrossRefGoogle Scholar
  31. 31.
    Agata Technical Proposal, J. Gerl et al. , ftp://ftp. gsi.de/pub/agata/prop.Google Scholar
  32. 32.
    G.J. Schmid et al. , IEEE Trans. Nucl. Sci. NS-44, 975 (1997).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. Lopez-Martens
    • 1
  • T. Døssing
    • 2
  • T. L. Khoo
    • 3
  • B. Herskind
    • 2
  • T. Lauristen
    • 3
  • M. Matsuo
    • 4
  • K. Yoshida
    • 5
  • A. Korichi
    • 1
  • F. Hannachi
    • 1
  • I. Ahmad
    • 3
  • H. Amro
    • 3
  • G. de Angelis
    • 6
  • D. Bazzacco
    • 7
  • C. Beausang
    • 8
  • E. Bouchez
    • 9
  • P. Bringel
    • 10
  • I. J. Calderin
    • 3
  • M. P. Carpenter
    • 3
  • S. M. Fischer
    • 3
  • G. Hackman
    • 3
  • K. Hauschild
    • 9
  • H. Hübel
    • 10
  • A. Hurstel
    • 9
  • R. V. F. Janssens
    • 3
  • F. G. Kondev
    • 3
  • W. Korten
    • 9
  • T. Kröll
    • 6
  • Y. Le Coz
    • 9
  • N. Marginean
    • 6
  • R. Menegazzo
    • 7
  • E. Mergel
    • 10
  • D. Napoli
    • 6
  • N. Nenoff
    • 10
  • S. Neumann
    • 10
  • A. Neusser
    • 10
  • D. Nisius
    • 3
  • G. Mukherjee
    • 3
  • M. Rejmund
    • 9
  • D. Rossbach
    • 10
  • C. Rossi Alvarez
    • 7
  • C. Schück
    • 1
  • G. Schonwasser
    • 10
  • A. K. Singh
    • 10
  • Ch Theisen
    • 9
  • Ch Vieu
    • 1
  • C. Ur
    • 7
  1. 1.CSNSMIN2P3-CNRSOrsayFrance
  2. 2.The Niels Bohr InstitueCopenhagenDenmark
  3. 3.Argonne National LaboratoryArgonneUSA
  4. 4.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan
  5. 5.Institute for Natural ScienceNara UniversityNaraJapan
  6. 6.INFNLaboratori Nazionali di LegnaroLegnaroItaly
  7. 7.INFNSezione di PadovaPadovaItaly
  8. 8.Wrigth Nuclear Structure LaboratoryYaleUSA
  9. 9.CEA - l’Orme des MersisiersDapnia-SPhNSaclayFrance
  10. 10.Helmhotz-Institut fur Strahlen- und KernphysikUniversität BonnBonnGermany

Personalised recommendations