The European Physical Journal Special Topics

, Volume 228, Issue 11, pp 2357–2369 | Cite as

The physics of governance networks: critical transitions in contagion dynamics on multilayer adaptive networks with application to the sustainable use of renewable resources

  • Fabian Geier
  • Wolfram Barfuss
  • Marc WiedermannEmail author
  • Jürgen Kurths
  • Jonathan F. DongesEmail author
Regular Article
Part of the following topical collections:
  1. Diffusion Dynamics and Information Spreading in Multilayer Networks


Adaptive networks are a versatile approach to model phenomena such as contagion and spreading dynamics, critical transitions and structure formation that emerge from the dynamic coevolution of complex network structure and node states. Adaptive networks have been successfully applied to study and understand phenomena ranging from epidemic spreading, infrastructure, swarm dynamics and opinion formation to the sustainable use of renewable resources. Here, we study critical transitions in contagion dynamics on multilayer adaptive networks with dynamic node states and present an application to the governance of sustainable resource use. We focus on a three-layer adaptive network model, where a polycentric governance network interacts with a social network of resource users which in turn interacts with an ecological network of renewable resources. We uncover that sustainability is favored for slow interaction timescales, large homophilic network adaptation rate (as long it is below the fragmentation threshold) and high taxation rates. Interestingly, we also observe a trade-off between an eco-dictatorship (reduced model with a single governance actor that always taxes unsustainable resource use) and the polycentric governance network of multiple actors. In the latter setup, sustainability is enhanced for low but hindered for high tax rates compared to the eco-dictatorship case. These results highlight mechanisms generating emergent critical transitions in contagion dynamics on multilayer adaptive networks and show how these can be understood and approximated analytically, relevant for understanding complex adaptive systems from various disciplines ranging from physics and epidemiology to sociology and global sustainability science. The paper also provides insights into potential critical intervention points for policy in the form of taxes in the governance of sustainable renewable resource use that can inform more process-detailed social-ecological modeling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Arneth, C. Brown, M.D.A. Rounsevell, Nat. Clim. Change 4, 550 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    A. Traulsen, D. Semmann, R.D. Sommerfeld, H.-J. Krambeck, M. Milinski, Proc. Natl. Acad. Sci. USA 107, 2962 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. Traulsen, J.M. Pacheco, M.A. Nowak, J. Theor. Biol. 246, 522 (2007).CrossRefGoogle Scholar
  4. 4.
    B. Min, M.S. Miguel, New J. Phys. 21, 035004 (2019).ADSCrossRefGoogle Scholar
  5. 5.
    C.-F. Schleussner, J.F. Donges, D.A. Engemann, A. Levermann, Sci. Rep. 6, 30790 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    C. Herrmann-Pillath, Ecol. Econ. 149, 212 (2018).CrossRefGoogle Scholar
  7. 7.
    C.J. Koliba, J.W. Meek, A. Zia, R.W. Mills, Governance networks in public administration and public policy, Routledge, 2018.Google Scholar
  8. 8.
    C. Huepe, G. Zschaler, A.-L. Do, T. Gross, New J. Phys. 13, 073022 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    D. Klenert, L. Mattauch, E. Combet, O. Edenhofer, C. Hepburn, R. Rafaty, S. Nicholas, Nat. Clim. Change 8, 669 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    F. Müller-Hansen, J. Heitzig, J.F. Donges, M.F. Cardoso, E.L. Dalla-Nora, P. Andrade, J. Kurths, K. Thonicke, Ecol. Econ. 159, 198 (2019).CrossRefGoogle Scholar
  11. 11.
    F. Müller-Hansen, M. Schlüter, M. Mäs, J.F. Donges, J.J. Kolb, K. Thonicke, J. Heitzig, Earth Sys. Dyn. 8, 977 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    I.D. Couzin, C.C. Ioannou, G. Demirel, T. Gross, C.J. Torney, A. Hartnett, L. Conradt, S.A. Levin, N.E. Leonard, Science 334, 1578 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    J.D. Farmer, C. Hepburn, M.C. Ives, T. Hale, T. Wetzer, P. Mealy, R. Rafaty, S. Srivastav, R. Way, Science 364, 132 (2019).ADSGoogle Scholar
  14. 14.
    J.-D. Mathias, J.M. Anderies, M. Janssen, Earth’s Future 6, 1555 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    J.-D. Mathias, S. Lade, V. Galaz, Int. J. Commons 11, 1 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Heitzig, T. Kittel, J.F. Donges, N. Molkenthin, Earth Syst. Dyn. 7, 1 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    J. Rockström, O. Gaffney, J. Rogelj, M. Meinshausen, N. Nakicenovic, H.J. Schellnhuber, Science 355, 1269 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Anderies, J.-D. Mathias, M.A. Janssen, Proc. Natl. Acad. Sci. 116, 5277 (2019).CrossRefGoogle Scholar
  19. 19.
    J.F. Donges, J. Heitzig, W. Barfuss, J.A. Kassel, T. Kittel, J.J. Kolb, T. Kolster, F. Müller-Hansen, I.M. Otto, M. Wiedermann, K.B. Zimmerer, W. Lucht, Earth Syst. Dyn. Discuss. (2018). Scholar
  20. 20.
    J.F. Donges, R. Winkelmann, W. Lucht, S.E. Cornell, J.G. Dyke, J. Rockström, J. Heitzig, H.J. Schellnhuber, Anthropocene Rev. 4, 151 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Renn, M. Laubichler, Extended Evolution and the History of Knowledge, in Integrated History and Philosophy of Science (Springer, 2017), pp. 109–125.Google Scholar
  22. 22.
    L. Horstmeyer, C. Kuehn, S. Thurner, Phys. Rev. E 98, 042313 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    M. Milkoreit, J. Hodbod, J. Baggio, K. Benessaiah, R. Calderón-Contreras, J.F. Donges, J.D. Mathias, J.C. Rocha, M. Schoon, S.E. Werners, Environ. Res. Lett. 13, 033005 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    M. Wiedermann, J.F. Donges, J. Heitzig, W. Lucht, J. Kurths, Phys. Rev. E 91, 052801 (2015).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Erdös, A. Rényi, On the Evolution of Random Graphs (Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 1960), pp. 17–61.Google Scholar
  26. 26.
    P.P. Klamser, M. Wiedermann, J.F. Donges, R.V. Donner, Phys. Rev. E 96, 052315 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    P.H. Verburg, J.A. Dearing, J.G. Dyke, S. Van Der Leeuw, S. Seitzinger, W. Steffen, J. Syvitski, Global Environ. Change 39, 328 (2016).CrossRefGoogle Scholar
  28. 28.
    P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    R. Amato, N.E. Kouvaris, M.S. Miguel, A. Daz-Guilera, New J. Phys. 19, 123019 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    R. Perman, Natural resource and environmental economics, (Pearson Education, 2003).Google Scholar
  31. 31.
    S. Jain, S. Krishna, Phys. Rev. Lett. 81, 5684 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    S. Jain, S. Krishna, Proc. Natl. Acad. Sci. USA 98, 543 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    S. Boccaletti, G. Bianconi, R. Criado, C.I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    S.J. Lade, Ö. Bodin, J.F. Donges, E.E. Kautsky, D. Galafassi, P. Olsson, M. Schlüter, arXiv: (2017).
  35. 35.
    T. Parsons, An Outline of the Social System (University of Puerto Rico, Department of Social Sciences, 1961).Google Scholar
  36. 36.
    T. Gross, B. Blasius, J.R. Soc, Interface 5, 259 (2008).Google Scholar
  37. 37.
    T. Gross, C.J. Dommar D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    T. Gross, H. Sayama, Adaptive networks, Springer, 2009.Google Scholar
  39. 39.
    V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    W. Barfuss, J.F. Donges, M. Wiedermann, W. Lucht, Earth System Dyn. 8, 255 (2017).ADSCrossRefGoogle Scholar
  41. 41.
    W. Steffen, J. Rockström, K. Richardson, T.M. Lenton, C. Folke, D. Liverman, C.P. Summerhayes, A.D. Barnosky, S.E. Cornell, M. Crucifix, J.F. Donges, I. Fetzer, S.J. Lade, M. Scheffer, R. Winkelmann, H.J. Schellnhuber, Proc. Natl. Acad. Sci. 115, 8252 (2018).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Complexity Science, Potsdam Institute for Climate Impact Research, Member of the Leibniz AssociationPotsdamGermany
  2. 2.Department of PhysicsLudwig Maximilians UniversityMunichGermany
  3. 3.Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz AssociationPotsdamGermany
  4. 4.Department of PhysicsHumboldt UniversityBerlinGermany
  5. 5.Saratov State UniversitySaratovRussia
  6. 6.Stockholm Resilience Centre, Stockholm UniversityStockholmSweden

Personalised recommendations