Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits

  • 18 Accesses

Abstract

We review the intriguing many-body physics resulting out of the interplay of a single, local impurity and the two-particle interaction in a one-dimensional Fermi system. Even if the underlying homogeneous correlated system is taken to be metallic, this interplay leads to an emergent quantum phase transition between metallic and insulating states. We show that the zero temperature critical point and the universal low-energy physics associated to it, is realized in two different models, the field theoretical local sine-Gordon model and spinless fermions on a lattice with nearest-neighbor hopping and two-particle interaction, as well as in an experimental setup consisting of a highly tunable quantum circuit. Despite the different high-energy physics of the three systems the universal low-energy scaling curves of the conductance as a function of temperature agree up to a very high precision without any free parameter. Overall this provides a convincing example of how emergent universality in complex systems originating from a common underlying quantum critical point establishes a bridge between different fields of physics. In our case between field theory, quantum many-body theory of correlated Fermi systems, and experimental circuit quantum electrodynamics.

References

  1. 1.

    A.L. Fetter, J.D. Walecka,Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

  2. 2.

    A. Luther, I Peschel, Phys. Rev. B 9, 2911 (1974)

  3. 3.

    D.C. Mattis, J. Math. Phys. 15, 609 (1974)

  4. 4.

    J. Sólyom, Adv. Phys. 28, 201 (1979)

  5. 5.

    T. Giamarchi,Quantum Physics in One Dimension (Oxford University Press, New York, 2003)

  6. 6.

    J. von Delft, H. Schoeller, Ann. Phys. 7, 225 (1998)

  7. 7.

    K. Schönhammer inInteracting Electrons in Low Dimensions, edited by D. Baeriswyl (Kluwer Academic Publishers, Dordrecht, 2005)

  8. 8.

    F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

  9. 9.

    M. Grioni, S. Pons, E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009)

  10. 10.

    V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464, 209 (2010)

  11. 11.

    T. Giamarchi, Int. J. Mod. Phys. B 26, 1244004 (2012)

  12. 12.

    I. Safi, H. Saleur, Phys. Rev. Lett. 93, 126602 (2004)

  13. 13.

    W. Apel, T.M. Rice, Phys. Rev. B 26, 7063 (1982)

  14. 14.

    C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992)

  15. 15.

    S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982)

  16. 16.

    A. Schmid, Phys. Rev. Lett. 51, (1983) 1506

  17. 17.

    K. Moon, H. Yi, C.L. Kane, S.M. Girvin, M.P.A. Fisher, Phys. Rev. Lett. 71, 4381 (1993)

  18. 18.

    K. Leung, R. Egger, C.H. Mak, Phys. Rev. Lett. 75, 3344 (1995)

  19. 19.

    P. Fendley, A.W.W. Ludwig, H. Saleur, Phys. Rev. B 52, 8934 (1995)

  20. 20.

    A. Anthore, Z. Iftikhar, E. Boulat, F.D. Parmentier, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Phys. Rev. X 8, 031075 (2018)

  21. 21.

    E. Boulat, https://arXiv:1912.03872

  22. 22.

    S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992)

  23. 23.

    D. Yue, L.I. Glazman, K.A. Matveev, Phys. Rev. B 49, 1966 (1994)

  24. 24.

    V. Meden, S. Andergassen, T. Enss, H. Schoeller, K. Schönhammer, New J. Phys. 10, 045012 (2008)

  25. 25.

    S. Sachdev,Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

  26. 26.

    H.T. Mebrahtu, I.V. Borzenets, D.E. Liu, H. Zheng, Y.V. Bomze, A.I. Smirnov, H.U. Baranger, G. Finkelstein, Nature 488, 61 (2012)

  27. 27.

    S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A 09, 3841 (1994)

  28. 28.

    P. Fendley, H. Saleur, Nucl. Phys. B 428, 681 (1994)

  29. 29.

    P. Fendley, H. Saleur, N. Warner, Nucl. Phys. B 430, 577 (1994)

  30. 30.

    A.B. Zamolodchikov, A.B. Zamolodchikov, Ann. Phys. 120, 253 (1979)

  31. 31.

    L.D. Faddeev, Sov. Sci. Rev. C 1, 107 (1980)

  32. 32.

    A.B. Zamolodchikov, Nucl. Phys. B 342, 695 (1990)

  33. 33.

    A. Zamolodchikov, Phys. Lett. B 253, 391 (1991)

  34. 34.

    M. Takahashi, M. Susuki, Prog. Theor. Phys. 48, 2187 (1972)

  35. 35.

    M. Takahashi,Thermodynamics of one-dimensional solvable models (Cambridge University Press, Cambridge, 2005)

  36. 36.

    V. E. Korepin, G. Izergin, N.M. Bogoliubov,Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993)

  37. 37.

    L.D. Faddeev, inSymétries Quantiques/Quantum Symmetries: Les Houches, Session LXIV, edited by A. Connes, K. Gawedzki, J. Zinn-Justin (North-Holland Publishing, Amsterdam, 1998)

  38. 38.

    M. Fowler, X. Zotos, Phys. Rev B 25, 5806 (1982)

  39. 39.

    G. Chung, Y.C. Chang, Phys. Rev. Lett. 50, 791 (1983)

  40. 40.

    P. Fendley, K. Intriligator, Nucl. Phys. B 372, 533 (1992)

  41. 41.

    R. Tateo, Int. J. Mod. Phys. A 10, 1357 (1995)

  42. 42.

    K. Janzen, V. Meden, K. Schönhammer, Phys. Rev. B 74, 085301 (2006)

  43. 43.

    I. Safi, H.J. Schulz, Phys. Rev. B 52, R17040 (1995)

  44. 44.

    D.L. Maslov, M. Stone, Phys. Rev. B 52, R5539 (1995)

  45. 45.

    V. Meden, P. Schmitteckert, N. Shannon, Phys. Rev. B 57, 8878 (1998)

  46. 46.

    W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, K. Schöhammer, Rev. Mod. Phys. 84, 299 (2012)

  47. 47.

    V. Meden, T. Enss, S. Andergassen, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 041302 (2004)

  48. 48.

    T. Enss, V. Meden, S. Andergassen, X. Barnabé-Thériault, W. Metzner, K. Schönhammer, Phys. Rev. B 71, 155401 (2005)

  49. 49.

    S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, Phys. Rev. B 73, 045125 (2006)

  50. 50.

    V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, J. Low Temp. Phys. 126, 1147 (2002)

  51. 51.

    V. Meden, S. Andergassen, W. Metzner, U. Schollwöck, K. Schönhammer, Europhys. Lett. 64, 769 (2003)

  52. 52.

    H. Grabert, M.H. Devoret (eds.), Single charge tunneling (Plenum Press, New York, 1992)

  53. 53.

    F.D. Parmentier, A. Anthore, S. Jezouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly, F. Pierre, Nat. Phys. 7, 935 (2011)

  54. 54.

    S. Jezouin, M. Albert, F. D. Parmentier, A. Anthore, U. Gennser, A. Cavanna, I. Safi, F. Pierre, Nat. Commun. 4, 1802 (2013)

Download references

Acknowledgments

Open access funding provided by Projekt DEAL.

Author information

Correspondence to Volker Meden.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anthore, A., Kennes, D.M., Boulat, E. et al. Universality at work – the local sine-Gordon model, lattice fermions, and quantum circuits. Eur. Phys. J. Spec. Top. 229, 663–682 (2020). https://doi.org/10.1140/epjst/e2019-900117-5

Download citation