Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Laser-induced crystallization of monoclinic nanowires in glassy selenium films

  • 12 Accesses

Abstract

The authors investigate influence of 632.8 nm laser irradiation on structural properties of thin glassy (amorphous) Se films synthesized on quartz substrates using vacuum thermal evaporation. They first propose the fact that low power laser irradiation of Se films (power density PS=80 W cm−2) initiates phase transformations, accompanied by growth of monocrystalline nanowires of metastable phase of monoclinic beta-Se8 in the amorphous matrix at room temperature. New structural properties of Se films are proven to be long term stable at room temperature. It is shown that laser irradiation at PS ≥ 800 W cm−2 induces synthesis of a mixture of nanocrystallites of trigonal Se and monoclinic alpha-Se8 in the amorphous films and their mass crystallization with growth of spherulites at room temperature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.V. Kolobov, B.T. Kolomiets, O.V. Konstantinov, V.M. Lyubin, J. Non-Cryst, Solids 45, 335 (1981)

  2. 2.

    V.S. Minaev, S.P. Timoshenkov, V.V. Kalugin, J. Optoelectron. Adv. Mater. 7, 1717 (2005)

  3. 3.

    I. Csarnovics, P. Nemec, V. Nazabal, M. Veres, A. Csik, M. Allix, S. Kokenyesi, Mater. Chem. Phys. 143, 889 (2014)

  4. 4.

    M.L. Trunov, P.M. Lytvyn, S.N. Yannopoulos, I.A. Szabo, S. Kokenyesi, Appl. Phys. Lett. 99, 051906 (2011)

  5. 5.

    M.L. Trunov, P.M. Lytvyn, P.M. Nagy, A. Csik, V.M. Rubish, Phys. Status Solidi B 251, 1354 (2014)

  6. 6.

    C. Cserhati, I. Csarnovics, L. Harasztosi, M.L. Trunov, S. Kokenyesi, J. Mater. Sci.: Mater. Electron. 28, 7024 (2017)

  7. 7.

    G.P. Lindberg, T.O. Loughlin, N. Gross, A. Reznik, S. Abbaszadeh, K.S. Karim, G. Belev, D.M. Hunter, B.A. Weinstein, Can. J. Phys. 92, 728 (2014)

  8. 8.

    R. Sharma, D. Kumar, V. Srinivasan, H. Jain, K.V. Adarsh, Opt. Express 23, 14085 (2015)

  9. 9.

    A.V. Kolobov, H. Oyanagi, Kaz. Tanaka, K. Tanaka, Phys. Rev. B, 55 726 (1997)

  10. 10.

    V.K. Tikhomirov, P. Hertogen, G.J. Adriaenssens, C. Glorieux, R. Ottenburgs, J. Non-Cryst. Solids 227–230, 732 (1998)

  11. 11.

    K. Okano, I. Saito, T. Mine, Y. Suzuki, T. Yamada, N. Rupesinghe, G.A.J. Amaratunga, W.I. Milne, D.R.T. Zahn, J. Non-Cryst. Solids 353, 308 (2007)

  12. 12.

    F. Mutar, A. Hemed, Adv. Phys. Theor. Appl. 31, 16 (2014)

  13. 13.

    A.H. Goldan, C. Li, S.J. Pennycook, J. Schneider, A. Blom, W. Zhao, J. Appl. Phys. 120, 135101 (2016)

  14. 14.

    G.M. Mikheev, K.G. Mikheev, T.N. Mogileva, A.P. Puzyr, V.S. Bondar, Quantum Electron. 44, 1 (2014)

  15. 15.

    R.E. Tallman, B.A. Weinstein, A. Reznik, M. Kubota, K. Tanioka, J.A. Rowlands, J. Non-Cryst. Solids 354, 4577 (2008)

  16. 16.

    S.N. Yannopoulos, K.S. Andrikopoulos, J. Chem. Phys. 121, 4747 (2004)

  17. 17.

    A.A. Baganich, V.I. Mikla, D.G. Semak, A.P. Sokolov, A.P. Shebanin, Phys. Status Solidi B 166, 297 (1991)

  18. 18.

    A. Darbandi, O. Rubel, J. Non-Cryst. Solids 358, 2434 (2012)

  19. 19.

    J. Qin, G. Qiu, J. Jian, H. Zhou, L. Yang, A. Charnas, D.Y. Zemlyanov, C.-Y. Xu, X. Xu, W. Wu, H. Wang, P.D. Ye, ACS Nano 11, 10222 (2017)

  20. 20.

    B. Fitton, C.H. Griffiths, J. Appl. Phys. 39, 3663 (1968)

  21. 21.

    T. Scopigno, W. Steurer, S.N. Yannopoulos, A. Chrissanthopoulos, M. Krisch, G. Ruocco, T. Wagner, Nat. Commun. 2, 195 (2011)

  22. 22.

    A. Roy, A.V. Kolobov, H. Oyanagi, K. Tanaka, Philos. Mag. B 78, 87 (1998)

  23. 23.

    V.S. Minaev, S.P. Timoshenkov, V.P. Vassiliev, E.V. Aleksandrovich, V.V. Kalugin, N.E. Korobova, J. Optoelectron. Adv. Mater. 18, 10 (2016)

  24. 24.

    A. Abdelouas, W.L. Gong, W. Lutze, J.A. Shelnutt, R. Franco, I. Moura, Chem. Mater. 12, 1510 (2000)

  25. 25.

    Z.-M. Liao, C. Hou, L.-P. Liu, D.P. Yu, Nanoscale Res. Lett. 5, 926 (2010)

  26. 26.

    X. Zhang, Y. Xie, F. Xu, X. Liu, S. Zhang, X. Tian, Solid State Sci. 5, 525 (2003)

  27. 27.

    N. Kumar, R. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci.: Mater. Electron. 25, 3537 (2014)

  28. 28.

    C. Wang, Q. Hu, Y. Wei, D. Fang, W. Xu, Z. Luo, Ionics 23, 3571 (2017)

  29. 29.

    X. Zhou, P. Gao, S. Sun, D. Bao, Y. Wang, X. Li, T. Wu, Y. Chen, P. Yang, Chem. Mater. 27, 6730 (2015)

  30. 30.

    S. Panchal, R.P. Chauhan, Electron. Mater. Lett. 15, 216 (2019)

  31. 31.

    X. Gao, T. Gao, L. Zhang, J. Mater. Chem. 13, 6 (2003)

  32. 32.

    W. Farfán, E. Mosquera, R. Vadapoo, S. Krishnan, C. Marn, J. Nanosci. Nanotechnol. 9, 4846 (2009)

Download references

Author information

Correspondence to Elena V. Aleksandrovich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleksandrovich, E.V., Mikheev, K.G. & Mikheev, G.M. Laser-induced crystallization of monoclinic nanowires in glassy selenium films. Eur. Phys. J. Spec. Top. 229, 197–204 (2020). https://doi.org/10.1140/epjst/e2019-900116-y

Download citation