Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2339–2349 | Cite as

A new memristive chaotic flow with a line of equilibria

  • Van Van Huynh
  • Abdul Jalil M. Khalaf
  • Ahmed Alsaedi
  • Tasawar Hayat
  • Hamid Reza AbdolmohammadiEmail author
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

A new 4-D memristive chaotic flow is proposed in this paper. Dynamical investigation of the proposed system shows some specific properties. The system has a line of equilibria which are unstable in some limited intervals and stable at other intervals. Investigating bifurcation diagram of the system shows an inverse period-doubling route to chaos. Also, different initiation in plotting bifurcation diagram shows its multistability. In some intervals of the parameter, two Lyapunov exponents of the system are positive, and the attractor is hyper-chaotic. However, in some other ranges of parameters, only one Lyapunov exponent is positive, and the attractor is chaotic. Basin of attraction of the system is studied which shows a vast region of attraction for the chaotic attractor. Entropy analysis of the system provides a viewpoint into the unpredictability of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.T. Pham, Commun. Nonlinear Sci. Numer. Simul. 44, 449 (2017)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D.W. Crevier, M. Meister, J. Neurophysiol. 79, 1869 (1998)CrossRefGoogle Scholar
  3. 3.
    S.N. Chowdhury, D. Ghosh, Europhys. Lett. 125, 10011 (2019)CrossRefGoogle Scholar
  4. 4.
    M. Louis, Phys. Rev. Lett. 64, 821 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L.-M. Zhang, K.H. Sun, W.H. Liu, S.B. He, Chin. Phys. B 26, 100504 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Ü. Çavusoğlu, S. Panahi, A. Akgül, S. Jafari, S. Kaçar, Analog Integr. Circ. Sig. Process. 98, 85 (2019)CrossRefGoogle Scholar
  7. 7.
    R.C. Hilborn, Chaos and nonlinear dynamics: An introduction for scientists and engineers (Oxford University Press, Oxford, 2000)Google Scholar
  8. 8.
    Q. Lai, T. Nestor, J. Kengne, X.W. Zhao, Chaos Solitons Fractals 107, 92 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Leonov, N. Kuznetsov, T. Mokaev, Commun. Nonlinear Sci. Numer. Simul. 28, 166 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  11. 11.
    E. Lorenz, The butterfly effect, in World Scientific Series on Nonlinear Science Series A (2000), Vol. 39, pp. 91–94CrossRefGoogle Scholar
  12. 12.
    G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999)CrossRefGoogle Scholar
  13. 13.
    Z. Wei, Phys. Lett. A 376, 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    X. Wang, G. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 1264 (2012)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    N. Kuznetsov, G. Leonov, IFAC World Congress 19, 5445 (2014)Google Scholar
  16. 16.
    N.V. Kuznetsov, O.A. Kuznetsova, G.A. Leonov, V.I. Vagaytsev, Hidden attractor in Chua’s circuits, in ICINCO (1) (2011), pp. 279–283Google Scholar
  17. 17.
    J. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos, S. Jafari, J. Kengne, K. Rajagopal, Entropy 20, 564 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    N. Kuznetsov, G. Leonov, T. Mokaev, https://arXiv:1504.04723 (2015)
  19. 19.
    J.C. Sprott, Chaos and time-series analysis (Oxford University Press, Oxford, 2003)Google Scholar
  20. 20.
    S. Majhi, D. Ghosh, J. Kurths, Phys. Rev. E 99, 012308 (2019)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Khajanchi, M. Perc, D. Ghosh, Chaos: Interdiscip. J. Nonlinear Sci. 28, 103101 (2018)CrossRefGoogle Scholar
  22. 22.
    W. Ai, K. Sun, Y. Fu, Int. J. Mod. Phys. C 29, 1850049 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    B. Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Petržela, Z. Hruboš, T. Gotthans, Radioengineering 20, 438 (2011)Google Scholar
  25. 25.
    T. Kapitaniak, L.O. Chua, Int. J. Bifurc. Chaos 4, 477 (1994)CrossRefGoogle Scholar
  26. 26.
    X. Wang, V.T. Pham, S. Jafari, C. Volos, J.M. Munoz-Pacheco, E. Tlelo-Cuautle, IEEE Access 5, 8851 (2017)CrossRefGoogle Scholar
  27. 27.
    R. Jing-Ya, S. Ke-Hui, M. Jun, Acta Phys. Sin. 65, 190502 (2016)Google Scholar
  28. 28.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSGoogle Scholar
  29. 29.
    F. Corinto, A. Ascoli, M. Gilli, Int. J. Circuit. Theory. Appl. 40, 1277 (2012)CrossRefGoogle Scholar
  30. 30.
    S.P. Adhikari, C. Yang, H. Kim, L.O. Chua, IEEE Trans. Neural Netw. Learn. Syst 23, 1426 (2012)CrossRefGoogle Scholar
  31. 31.
    F. Corinto, V. Krulikovskyi, S.D. Haliuk, Memristor-based chaotic circuit for pseudo-random sequence generators, in Electrotechnical Conference (MELECON), 2016, 18th Mediterranean (IEEE, 2016)Google Scholar
  32. 32.
    B. Muthuswamy, L.O. Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  33. 33.
    Q. Li, S. Hu, S. Tang, G. Zeng, Int. J. Circuit. Theory. Appl. 42, 1172 (2014)CrossRefGoogle Scholar
  34. 34.
    B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Complexity 2018, 3872573 (2018)Google Scholar
  35. 35.
    Q. Xu, Q.L. Zhang, H. Qian, H.G. Wu, B.C. Bao, Int. J. Circuit. Theory. Appl. 46, 1917 (2018)CrossRefGoogle Scholar
  36. 36.
    B.C. Bao, Q. Xu, H. Bao, M. Chen, Electron. Lett. 52, 1008 (2016)CrossRefGoogle Scholar
  37. 37.
    M.-S. Abdelouahab, R. Lozi, Indian J. Ind, Appl. Math. 6, 105 (2015)Google Scholar
  38. 38.
    M. Molaie, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Int. J. Bifurc. Chaos 23, 1350188 (2013)CrossRefGoogle Scholar
  39. 39.
    J.C. Sprott, S. Jafari, V.T. Pham, Z.S. Hosseini, Phys. Lett. A 379, 2030 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Kengne, V.F. Signing, J.C. Chedjou, G.D. Leutcho, Int. J. Dyn. Control 6, 1 (2017)Google Scholar
  41. 41.
    V.T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, Eur. Phys. J. Special Topics 225, 127 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    V.T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, X. Wang, A chaotic hyperjerk system based on memristive device, in Advances and Applications in Chaotic Systems (Springer International Publishing, 2016), pp. 39–58Google Scholar
  43. 43.
    V.-T. Pham, C. Volos, L.V. Gambuzza, Sci. World J. 2014, 368986 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Bao, W. Liu, M. Chen, Nonlinear Dyn. 96, 1 (2019)CrossRefGoogle Scholar
  45. 45.
    M. Chen, B. Bao, T. Jiang, H. Bao, Q. Xu, H. Wu, J. Wang, Int. J. Bifurc. Chaos 28, 1850120 (2018)CrossRefGoogle Scholar
  46. 46.
    M. Chen, Q. Xu, Y. Lin, B. Bao, Nonlinear Dyn. 87, 789 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Chen, M. Sun, B. Bao, H. Wu, Q. Xu, J. Wang, Nonlinear Dyn. 91, 1395 (2018)CrossRefGoogle Scholar
  48. 48.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica. D 16, 285 (1985)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    T.M. Cover, J.A. Thomas, Elements of information theory (John Wiley & Sons, 2012)Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Van Van Huynh
    • 1
  • Abdul Jalil M. Khalaf
    • 2
  • Ahmed Alsaedi
    • 3
  • Tasawar Hayat
    • 3
    • 4
  • Hamid Reza Abdolmohammadi
    • 5
    Email author
  1. 1.Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Ministry of Higher Education and Scientific ResearchBaghdadIraq
  3. 3.NAAM Research Group, King Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  5. 5.Department of Electrical EngineeringGolpayegan University of TechnologyGolpayeganIran

Personalised recommendations