Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2325–2337 | Cite as

Effects of memristor-based coupling in the ensemble of FitzHugh–Nagumo elements

  • Alexander G. Korotkov
  • Alexey O. Kazakov
  • Tatiana A. LevanovaEmail author
Regular Article
  • 2 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

We consider a system of two identical FitzHugh–Nagumo elements with electrical and memristor-based couplings and study the effect of these couplings on the nature of neuron-like spiking regimes that were previously observed in such systems with only chemical excitatory couplings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.E. Pereda, Nat. Rev. Neurosci. 15, 250 (2014)CrossRefGoogle Scholar
  2. 2.
    V.S. Afraimovich, M.I. Rabinovich, P. Varona, Int. J. Bifurc. Chaos 14, 1195 (2004)CrossRefGoogle Scholar
  3. 3.
    T.A. Levanova, M.A. Komarov, G.V. Osipov, Eur. Phys. J. Special Topics 222, 2417 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    R. Reimbayev, I. Belykh, Int. J. Bifurc. Chaos 22, 1440013 (2014)CrossRefGoogle Scholar
  5. 5.
    B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 93, 012205 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A.R. Martin, P.A. Fuchs, D.A. Brown, M.E. Diamond, D.A. Weisblat, From neuron to brain, 5th edn. (Sinauer Associates, Sunderland, MA, 2011)Google Scholar
  7. 7.
    B.W. Connors, M.A. Long, Annu. Rev. Neurosci. 27, 393 (2004)CrossRefGoogle Scholar
  8. 8.
    H.V. Wheal, A.M. Thomson, Neuroscience 13, 97 (1984)CrossRefGoogle Scholar
  9. 9.
    V. Zsiros, I. Aradi, G. Maccaferri, J. Physiol. 578, 527 (2007)CrossRefGoogle Scholar
  10. 10.
    D.G. Placantonakis, A.A. Bukovsky, S.A. Aicher, H.P. Kiem, J.P. Welsh, J. Neurosci. 26, 5008 (2006)CrossRefGoogle Scholar
  11. 11.
    C.E. Landisman, B.W. Connors, Science 310, 1809 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Haas, B. Zavala, C.E. Landisman, Science 334, 389 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Haas, C.M. Greenwald, A.E. Pereda, BMC Cell Biol. 17, 51 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, R. Neely, C.E. Landisman, J. Neurosci. 35, 7616 (2015)CrossRefGoogle Scholar
  15. 15.
    J. O’Brien, Curr. Opin. Neurobiol. 29, 64 (2014)CrossRefGoogle Scholar
  16. 16.
    S.A. Bloomfield, B. Volgyi, Nat. Rev. Neurosci. 10, 495 (2009)CrossRefGoogle Scholar
  17. 17.
    B.W. Connors, Electrical signaling with neuronal gap junctions, in Connexins: A guide, edited by A. Harris, D. Locke (Humana Press/Springer, 2009), pp. 143–164Google Scholar
  18. 18.
    A. Gelperin, J. Neurosci. 26, 1663 (2006)CrossRefGoogle Scholar
  19. 19.
    M.J. Kahana, J. Neurosci. 26, 1669 (2006)CrossRefGoogle Scholar
  20. 20.
    O. Paulsen, T.J. Sejnowski, J. Neurosci. 26, 1661 (2006)CrossRefGoogle Scholar
  21. 21.
    T.J. Sejnowski, O. Paulsen, J. Neurosci. 26, 1673 (2006)CrossRefGoogle Scholar
  22. 22.
    R. Reimbayev, K. Daley, I. Belykh, Phil. Trans. R. Soc. A 375, 20160282 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    N. Spruston, Neuron 31, 669 (2001)CrossRefGoogle Scholar
  24. 24.
    W. Singer, C.M. Gray, Annu. Rev. Neurosci. 18, 555 (1995)CrossRefGoogle Scholar
  25. 25.
    W. Singer, Neuron 24, 49 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Lv, C.N. Wang, G.D. Ren, J. Ma, X.L. Song, Nonlinear Dyn. 85, 1479 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Lv, J. Ma, Neurocomputing 205, 375 (2016)CrossRefGoogle Scholar
  29. 29.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)Google Scholar
  30. 30.
    L.O. Chua, Nanotechnology 24, 1 (2013)CrossRefGoogle Scholar
  31. 31.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Laiho, E. Lehtonen, in Proceedings IEEE of International Symposium on Circuits and Systems (ISCAS 2010) (2010), pp. 2051–2054Google Scholar
  33. 33.
    B. Linares-Barranco, T. Serrano-Gotarredona, Nature Precedings 1 (2009)Google Scholar
  34. 34.
    F. Wu, C. Wang, W. Jin, J. Ma, Physica A 469, 81 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, E. Tlelo-Cuautle, S. Vaidyanathan, J. Eng. Sci. Technol. Rev. 8, 157 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017)MathSciNetGoogle Scholar
  37. 37.
    A.G. Korotkov, A.O. Kazakov, T.A. Levanova, G.V. Osipov, Commun. Nonlinear Sci. Numer. Simul. 71, 38 (2019)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Destexhe, Z.F. Mainen, T.J. Sejnowski, Neural Comput. 6, 14 (1994)CrossRefGoogle Scholar
  39. 39.
    A.G. Korotkov, A.O. Kazakov, T.A. Levanova, G.V. Osipov, IFAC-PapersOnLine 51, 241 (2018)CrossRefGoogle Scholar
  40. 40.
    A. Riehle, S. Grun, M. Diesmann, Science 278, 1950 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    J. Fell, N. Axmacher, Nat. Rev. Neurosci. 12, 105 (2011)CrossRefGoogle Scholar
  42. 42.
    S.M. Montgomery, G. Buzsaki, Proc. Natl. Acad. Sci. 104, 14495 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    K. Lehnertz, S. Bialonski, M.T. Horstmann, D. Krug, A. Rothkegel, M. Staniek, T. Wagner, J. Neurosci. Methods 183, 42 (2009)CrossRefGoogle Scholar
  44. 44.
    I. Netoff, J. Schiff, J. Neurosci. 22, 7297 (2002)CrossRefGoogle Scholar
  45. 45.
    S. Majhi, M. Perc, D. Ghosh, Sci. Rep. 6, 39033 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Q. Wang, M. Perc, Z. Duan, G. Chen, Phys. Rev. E 80, 026206 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Q.Y. Wang, M. Aleksandra, M. Perc, Chin. Phys. B 20, 040504 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    X.-J. Wang, J. Rinzel, Neural Comput. 4, 84 (1992)CrossRefGoogle Scholar
  49. 49.
    M.J. Sharifi, Y.M. Banadaki, J. Circuits Syst. Comput. 19, 407 (2010)CrossRefGoogle Scholar
  50. 50.
    H.P. Schwan, Biological engineering (McGraw-Hill Companies, New York, 1969)Google Scholar
  51. 51.
    M. Krupa, P. Szmolyan, J. Differ. Equ. 174, 312 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    T.A. Levanova, A.O. Kazakov, A.K. Korotkov, G.V. Osipov, Izvestiya Vysshikh Uchebnykh Zavedeniy Prikladnaya Nelineynaya Dinamika 26, 101 (2018)Google Scholar
  53. 53.
    L.P. Shilnikov, Sov. Mat. Dok. 6, 163 (1965)Google Scholar
  54. 54.
    L.P. Shilnikov, Mat. Sb. 81, 92 (1970)MathSciNetGoogle Scholar
  55. 55.
    A. Mishra, S. Saha, M. Vigneshwaran, P. Pal, T. Kapitaniak, S.K. Dana, Phys. Rev. E 97, 062311 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    P. Gaspard, S. Gonchenko, Nonlinearity 10, 409 (1997)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    D.S. Reich, F. Mechler, K.P. Purpura, J.D. Victor, J. Neurosci. 20, 1964 (2000)CrossRefGoogle Scholar
  58. 58.
    Y.V. Bakhanova, A.O. Kazakov, A.G. Korotkov, T.A. Levanova, Eur. Phys. J. Special Topics 227, 959 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander G. Korotkov
    • 1
  • Alexey O. Kazakov
    • 2
  • Tatiana A. Levanova
    • 1
    Email author
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations