The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2301–2312 | Cite as

An overview of memristive cryptography

  • Alex Pappachen JamesEmail author
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications


Smaller, smarter and faster edge devices in the Internet of things era demand secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras and wearables. In this article, the current state of memristive cryptography is placed in context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z.-K. Zhang, M. Cheng Yi Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, S. Shieh, IoT security: ongoing challenges and research opportunities, in 2014 IEEE 7th International Conference on Service-oriented Computing and Applications (IEEE, 2014), pp. 230–234Google Scholar
  2. 2.
    A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for IoT security and privacy: the case study of a smart home, in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (IEEE, 2017), pp. 618–623Google Scholar
  3. 3.
    J. Cache, V. Liu, J. Wright, Hacking Exposed Wireless: Wireless Security Secrets and Solutions (McGraw-Hill, 2007)Google Scholar
  4. 4.
    M. Warren, S. Leitch, Social engineering and its impact via the internet, in Proceedings of the 4th Australian Information Security Management Conference (Australian Information Security Management, 2006), pp. 184–189Google Scholar
  5. 5.
    J. Katz, A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1996)Google Scholar
  6. 6.
    M. Stamp, R.M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real World (John Wiley & Sons, 2007)Google Scholar
  7. 7.
    K. Balasubramanian, Recent developments in cryptography: a survey, in Algorithmic Strategies for Solving Complex Problems in Cryptography (IGI Global, 2018), pp. 1–22Google Scholar
  8. 8.
    Y.B. Zhou, D.G. Feng, IACR Cryptol. ePrint Arch. 2005, 388 (2005)Google Scholar
  9. 9.
    E. Brier, M. Joye, Weierstra elliptic curves and side-channel attacks, in International Workshop on Public Key Cryptography (Springer, 2002), pp. 335–345Google Scholar
  10. 10.
    G. Joy Persial, M. Prabhu, R. Shanmugalakshmi, J. Int, Adva. Sci. Res. Rev. 1, 54 (2011)Google Scholar
  11. 11.
    A.V. Sergienko, Quantum Communications and Cryptography (CRC Press, 2018)Google Scholar
  12. 12.
    J. Buchmann, K. Lauter, M. Mosca, IEEE Security Privacy 16, 12 (2018)CrossRefGoogle Scholar
  13. 13.
    I. Damaj, S. Kasbah, Comput. Electr. Eng. 69, 572 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Rajagopalan, R. Amirtharajan, H.N. Upadhyay, J.B. Balaguru Rayappan, J. App. Sci. 12, 201 (2012)CrossRefGoogle Scholar
  15. 15.
    G.M. de Dormale, J.-J. Quisquater, J. Syst. Archit. 53, 72 (2007)CrossRefGoogle Scholar
  16. 16.
    N. El Mrabet, J.J.A. Fournier, L. Goubin, R. Lashermes, Cryptogr. Commun. 7, 185 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Pantelopoulos, N.G. Bourbakis, IEEE Trans. Syst. Man Cybern. Part C (App. Rev.) 40, 1 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Ometov, P. Masek, L. Malina, R. Florea, J. Hosek, S. Andreev, J. Hajny, J. Niutanen, Y. Koucheryavy, Feasibility characterization of cryptographic primitives for constrained (wearable) iot devices, in 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (IEEE, 2016), pp. 1–6Google Scholar
  19. 19.
    H. Huff, Into the nano era: Moore’s law beyond planar silicon CMOS (Springer Science and Business Media, 2008), Vol. 106Google Scholar
  20. 20.
    R.S. Williams, Comput. Sci. Eng. 19, 7 (2017)CrossRefGoogle Scholar
  21. 21.
    A.B. Kahng, IEEE Des. Test Comput. 27, 86 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Krestinskaya, A.P. James, L.O. Chua, Neuro-memristive circuits for edge computing: a review, in IEEE Transactions on Neural Networks and Learning Systems (IEEE, 2019), pp. 1–20Google Scholar
  23. 23.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R. Stanley Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    L. Chua, IEEE Trans. Circuit Theor. 18, 507 (1971)CrossRefGoogle Scholar
  25. 25.
    S. Vongehr, X. Meng, Sci. Rep. 5, 11657 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    I. Abraham, Sci. Rep. 8, 10972 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Y.N. Joglekar, S.J. Wolf, Eur. J. Phys. 30, 661 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Ho, G.M. Huang, P. Li, IEEE Trans. Circuits Syst. I: Regul. Pap. 58, 724 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Corinto, M. Forti, IEEE Trans. Circuits Syst. I: Regul. Pap. 65, 1327 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Chua, Appl. Phys. A 124, 563 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    P.J. Kuekes, D.R. Stewart, R.S. Williams, J. Appl. Phys. 97, 034301 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    B. Mouttet, Proposal for memristor crossbar design and applications, in Memristors and Memristive Systems Symposium, UC Berkeley (2008)Google Scholar
  33. 33.
    B.L. Mouttet, Programmable Crossbar Signal Processor (November 27 2007), US Patent 7,302,513 Google Scholar
  34. 34.
    P.O. Vontobel, W. Robinett, P.J. Kuekes, D.R. Stewart, J. Straznicky, R.S. Williams, Nanotechnology 20, 425204 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, Nano Lett. 12, 389 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    X. Zhang, A. Huang, Q. Hu, Z. Xiao, P.K. Chu, Phys. Status Solidi A 215, 1700875 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    O. Krestinskaya, K.N. Salama, A.P. James, Analog backpropagation learning circuits for memristive crossbar neural networks, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–5Google Scholar
  38. 38.
    G.C. Adam, B.D. Hoskins, M. Prezioso, F. Merrikh-Bayat, B. Chakrabarti, D.B. Strukov, IEEE Trans. Electron Devices 64, 312 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    W. Lu, K.-H. Kim, T. Chang, S. Gaba, Two-terminal resistive switches (memristors) for memory and logic applications, in Proceedings of the 16th Asia and South Pacific Design Automation Conference (IEEE Press, 2011), pp. 217–223Google Scholar
  40. 40.
    A. Irmanova, A.P. James, Analog Integr. Circuits Sign. Process. 95, 429 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, T. Prodromakis, Sci. Rep. 7, 17532 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, Nat. Electr. 1, 52 (2018)CrossRefGoogle Scholar
  43. 43.
    O. Krestinskaya, A. Irmanova, A.P. James, Memristive non-idealities: is there any practical implications for designing neural network chips? in IEEE International Symposium on Circuits and Systems (IEEE, 2019), pp. 1–5Google Scholar
  44. 44.
    T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel, IEEE Des. Test Comput. 24, 522 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Daemen, V. Rijmen, The Design of Rijndael: AES-the Advanced Encryption Standard (Springer Science & Business Media, 2013)Google Scholar
  46. 46.
    D. Hankerson, A. Menezes, Elliptic Curve Cryptography (Springer, 2011)Google Scholar
  47. 47.
    D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, Hight: a new block cipher suitable for low-resource device, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, Heidelberg, 2006), pp. 46–59Google Scholar
  48. 48.
    T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, The 128-bit blockcipher CLEFIA, in International Workshop on Fast Software Encryption (Springer, 2007), pp. 181–195Google Scholar
  49. 49.
    S. Panasenko, S. Smagin, Int. J. Comput. Theor. Eng. 3, 516 (2011)CrossRefGoogle Scholar
  50. 50.
    S.R. Moosavi, T.N. Gia, A.-M. Rahmani, E. Nigussie, S. Virtanen, J. Isoaho, H. Tenhunen, Proc. Comput. Sci. 52, 452 (2015)CrossRefGoogle Scholar
  51. 51.
    D. Engels, X. Fan, G. Gong, H. Hu, E.M. Smith, Hummingbird: ultra-lightweight cryptography for resource-constrained devices, in International Conference on Financial Cryptography and Data Security (Springer, 2010), pp. 3–18Google Scholar
  52. 52.
    A.Y. Poschmannm, Lightweight cryptography: cryptographic engineering for a pervasive world, Ph.D. thesis, Citeseer, 2009Google Scholar
  53. 53.
    L. Knudsen, G. Leander, A. Poschmann, M.J.B. Robshaw, Printcipher: a block cipher for ic-printing, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2010), pp. 16–32Google Scholar
  54. 54.
    C.H. Lim, T. Korkishko, mCrypton – a lightweight block cipher for security of low-cost RFID tags and sensors, in International Workshop on Information Security Applications (Springer, 2005), pp. 243–258Google Scholar
  55. 55.
    Z. Gong, S. Nikova, Y.W. Law, Klein: a new family of lightweight block ciphers, in International Workshop on Radio Frequency Identification: Security and Privacy Issues (Springer, 2011), pp. 1–18Google Scholar
  56. 56.
    S. Tomoyasu, Twine: a lightweight block cipher for multiple platforms, in Selected Areas in Cryptography (Springer Berlin Heidelberg, 2012), Vol. 7707Google Scholar
  57. 57.
    R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, L. Wingers, The simon and speck lightweight block ciphers, in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, 2015), pp. 1–6Google Scholar
  58. 58.
    J. Borghoff, A. Canteaut, T. Güneysu, E.B. Kavun, M. Knezevic, L.R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, PRINCE–A low-latency block cipher for pervasive computing applications, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2012), pp. 208–225Google Scholar
  59. 59.
    M.R. Albrecht, B. Driessen, E.B. Kavun, G. Leander, C. Paar, T. Yalçn, Block ciphers – focus on the linear layer (feat. PRIDE), in International Cryptology Conference (Springer, 2014), pp. 57–76Google Scholar
  60. 60.
    W. Wu, L. Zhang, LBlock: a lightweight block cipher, in International Conference on Applied Cryptography and Network Security (Springer, 2011), pp. 327–344Google Scholar
  61. 61.
    M. Izadi, B. Sadeghiyan, S.S. Sadeghian, H.A. Khanooki, Mibs: a new lightweight block cipher, in International Conference on Cryptology and Network Security (Springer, 2009), pp. 334–348Google Scholar
  62. 62.
    H. Cheng, H.M. Heys, C. Wang, Puffin: a novel compact block cipher targeted to embedded digital systems, in 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools (IEEE, 2008), pp. 383–390Google Scholar
  63. 63.
    S. Tripathy, Int. J. Commun. Networks Distrib. Syst. 10, 176 (2013)CrossRefGoogle Scholar
  64. 64.
    K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-lightweight blockcipher, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2011), pp. 342–357Google Scholar
  65. 65.
    S. Kolay, D. Mukhopadhyay, Khudra: a new lightweight block cipher for FPGAs, in Int. Conf. Security Privacy Appl. Cryptogr. Eng. (Springer, 2014), pp. 126–145Google Scholar
  66. 66.
    R. Struik, AEAD Ciphers for Highly Constrained Networks (DIAC, 2013)Google Scholar
  67. 67.
    J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu, S. Heyse, S. Kerckhof, F. Koeune, T. Plos, T. Pöppelmann, Compact implementation and performance evaluation of hash functions in attiny devices, in International Conference on Smart Card Research and Advanced Applications (Springer, 2012), pp. 158–172Google Scholar
  68. 68.
    B. Schneier, Cryptologia 24, 18 (2000)CrossRefGoogle Scholar
  69. 69.
    B. Sun, Z. Liu, V. Rijmen, R. Li, L. Cheng, Q. Wang, H. Alkhzaimi, C. Li, Links among impossible differential, integral and zero correlation linear cryptanalysis, in Annual Cryptology Conference (Springer, 2015), pp. 95–115Google Scholar
  70. 70.
    D. Karaklajić, J.-M. Schmidt, I. Verbauwhede, IEEE Trans. Very Large Scale Integr. VLSI Syst. 21, 2295 (2013)CrossRefGoogle Scholar
  71. 71.
    L.R. Knudsen, Truncated and higher order differentials, in International Workshop on Fast Software Encryption (Springer, 1994), pp. 196–211Google Scholar
  72. 72.
    J. Kim, S. Hong, J. Sung, S. Lee, J. Lim, S. Sung, Impossible differential cryptanalysis for block cipher structures, in International Conference on Cryptology in India (Springer, 2003), pp. 82–96Google Scholar
  73. 73.
    E. Biham, A. Biryukov, A. Shamir, Miss in the middle attacks on idea and khufu, in International Workshop on Fast Software Encryption (Springer, 1999), pp. 124–138Google Scholar
  74. 74.
    Q. Wang, Z. Liu, K. Varc, Y. Sasaki, V. Rijmen, Y. Todo, Cryptanalysis of reduced-round SIMON32 and SIMON48, in International Conference in Cryptology in India (Springer, 2014), pp. 143–160Google Scholar
  75. 75.
    C. Boura, M. Naya-Plasencia, V. Suder, Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2014), pp. 179–199Google Scholar
  76. 76.
    H. Mala, M. Dakhilalian, M. Shakiba, J. Comput. Sci. Technol. 26, 744 (2011)CrossRefGoogle Scholar
  77. 77.
    W.-L. Wu, W.-T. Zhang, D.-G. Feng, J. Comput. Sci. Technol. 22, 449 (2007)CrossRefGoogle Scholar
  78. 78.
    H. Mala, M. Dakhilalian, V. Rijmen, M. Modarres-Hashemi, Improved impossible differential cryptanalysis of 7-round AES-128, in International Conference on Cryptology in India (Springer, 2010), pp. 282–291Google Scholar
  79. 79.
    F. Karakoç, H. Demirci, A.E. Harmanc, Impossible differential cryptanalysis of reduced-round lblock, in IFIP International Workshop on Information Security Theory and Practice (Springer, 2012), pp. 179–188Google Scholar
  80. 80.
    K. Nishimura, M. Sibuya, J. Cryptol. 2, 13 (1990)CrossRefGoogle Scholar
  81. 81.
    L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, S. Ling, Improved meet-in-the-middle cryptanalysis of KTANTAN (poster), in Australasian Conference on Information Security and Privacy (Springer, 2011), pp. 433–438Google Scholar
  82. 82.
    A. Bogdanov, D. Khovratovich, C. Rechberger, Biclique cryptanalysis of the full AES, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 344–371Google Scholar
  83. 83.
    A. Canteaut, M. Naya-Plasencia, B. Vayssiere, Sieve-in-the-middle: improved mitm attacks, in Advances in Cryptology–CRYPTO 2013 (Springer, 2013), pp. 222–240Google Scholar
  84. 84.
    K. Jeong, H.C. Kang, C. Lee, J. Sung, S. Hong, Biclique cryptanalysis of lightweight block ciphers present, piccolo and led, IACR Cryptol. ePrint Arch. 2012, 621 (2012)Google Scholar
  85. 85.
    M.A. Abdelraheem, C. Blondeau, M. Naya-Plasencia, M. Videau, E. Zenner, Cryptanalysis of ARMADILLO2, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 308–326Google Scholar
  86. 86.
    M. Naya-Plasencia, How to improve rebound attacks, in Annual Cryptology Conference (Springer, 2011), pp. 188–205Google Scholar
  87. 87.
    M. Naya-Plasencia, D. Toz, K. Varici, Rebound attack on JH42, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, 2011), pp. 252–269Google Scholar
  88. 88.
    F. Mendel, C. Rechberger, M. Schläffer, S.S. Thomsen, The rebound attack: cryptanalysis of reduced whirlpool and grøstl, in International Workshop on Fast Software Encryption (Springer, 2009), pp. 260–276Google Scholar
  89. 89.
    V. Lallemand, M. Naya-Plasencia, Cryptanalysis of full sprout, in Annual Cryptology Conference (Springer, 2015), pp. 663–682Google Scholar
  90. 90.
    G. Leander, On linear hulls, statistical saturation attacks, present and a cryptanalysis of puffin, in Annual International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2011), pp. 303–322Google Scholar
  91. 91.
    B. Muthuswamy, Int. J. Bifurcation Chaos 20, 1335 (2010)ADSCrossRefGoogle Scholar
  92. 92.
    C. Zheng, H.H.C. Iu, T. Fernando, D. Yu, H. Guo, J.K. Eshraghian, Chaos: Interdisciplinary J. Nonlinear Sci. 28, 063115 (2018)CrossRefGoogle Scholar
  93. 93.
    T. Yang, C.W. Wu, L.O. Chua, IEEE Trans. Circuits Syst. I: Fundam. Theor. App. 44, 469 (1997)CrossRefGoogle Scholar
  94. 94.
    M.T. Arafin, C. Dunbar, G. Qu, N. McDonald, L. Yan, A survey on memristor modeling and security applications, in Sixteenth International Symposium on Quality Electronic Design (IEEE, 2015), pp. 440–447Google Scholar
  95. 95.
    B. Wang, F.C. Zou, J. Cheng, Optik 154, 538 (2018)ADSCrossRefGoogle Scholar
  96. 96.
    W.J. Miller, N.G. Trbovich, RSA Public-key Data Encryption System Having Large Random Prime Number Generating Microprocessor or the Like (September 28, 1982), yUS Patent 4,351,982Google Scholar
  97. 97.
    F. Corinto, V. Krulikovskyi, S.D. Haliuk, Memristor-based chaotic circuit for pseudo-random sequence generators, in 2016 18th Mediterranean Electrotechnical Conference (MELECON) (IEEE, 2016), pp. 1–3Google Scholar
  98. 98.
    R. Maes, Physically Unclonable Functions (Springer, 2016)Google Scholar
  99. 99.
    G. Edward Suh, S. Devadas, Physical unclonable functions for device authentication and secret key generation, in 2007 44th ACM/IEEE Design Automation Conference (IEEE, 2007), pp. 9–14Google Scholar
  100. 100.
    N. Beckmann, M. Potkonjak, Hardware-based public-key cryptography with public physically unclonable functions, in International Workshop on Information Hiding (Springer, 2009), pp. 206–220Google Scholar
  101. 101.
    R. Maes, I. Verbauwhede, Physically unclonable functions: a study on the state of the art and future research directions, in Towards Hardware-Intrinsic Security (Springer, 2010), pp. 3–37Google Scholar
  102. 102.
    J. Rajendran, G.S. Rose, R. Karri, M. Potkonjak, Nano-PPUF: a memristor-based security primitive, in 2012 IEEE Computer Society Annual Symposium on VLSI (IEEE, 2012), pp. 84–87Google Scholar
  103. 103.
    Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, IEEE Access 4, 61 (2016)CrossRefGoogle Scholar
  104. 104.
    A. Mazady, M.T. Rahman, D. Forte, M. Anwar, IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 222 (2015)ADSCrossRefGoogle Scholar
  105. 105.
    M.T. Arafin, G. Qu, IEEE Trans. Very Large Scale Integr. VLSI Syst. 99, 1 (2018)Google Scholar
  106. 106.
    M. Uddin, M.D. Majumder, K. Beckmann, H. Manem, Z. Alamgir, N.C. Cady, G.S. Rose, ACM J. Emerg. Technol. Comput. Syst. (JETC) 14, 2 (2018)Google Scholar
  107. 107.
    A. Maiti, P. Schaumont, J. Cryptol. 24, 375 (2011)CrossRefGoogle Scholar
  108. 108.
    S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier, C. Boit, H. Dittrich, Physical characterization of arbiter PUFs, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2014), pp. 493–509Google Scholar
  109. 109.
    A. Garg, T.T. Kim, Design of sram puf with improved uniformity and reliability utilizing device aging effect, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2014), pp. 1941–1944Google Scholar
  110. 110.
    R. Zhang, H. Jiang, Z.R. Wang, P. Lin, Y. Zhuo, D. Holcomb, D.H. Zhang, J.J. Yang, Q. Xia, Nanoscale 10, 2721 (2018)CrossRefGoogle Scholar
  111. 111.
    H. Nili, G.C. Adam, B. Hoskins, M. Prezioso, J. Kim, M. Reza Mahmoodi, F.M. Bayat, O. Kavehei, D.B. Strukov, Nat. Electron. 1, 197 (2018)CrossRefGoogle Scholar
  112. 112.
    Y. Gao, C. Jin, J. Kim, H. Nili, X. Xu, W. Burleson, O. Kavehei, M. van Dijk, D.C. Ranasinghe, U. Rührmair, Efficient erasable PUFs from programmable logic and memristors, IACR Cryptol. ePrint Arch. 2018, 358 (2018)Google Scholar
  113. 113.
    S. Kvatinsky, L. Azriel, Memristive Security Hash Function (November 1, 2018), US Patent App. 15/965,924Google Scholar
  114. 114.
    L. Azriel, S. Kvatinsky, Towards a memristive hardware secure hash function (memhash), in 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) (IEEE, 2017), pp. 51–55Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations