Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2157–2170 | Cite as

Exponential synchronization of memristor-based delayed neutral-type neural networks with Lévy noise via impulsive control

  • Shuo Ma
  • Yanmei KangEmail author
Regular Article
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

This paper is to deal with the pth (p = 2) moment exponential synchronization of stochastic memristor-based neutral-type neural networks with time-varying delays and Lévy noise via impulsive control. According to the characteristics of memristor and Lévy-Itô decomposition theorem, a model of stochastic memristor-based neutral-type neural networks with time-varying delays and Lévy noise is established. Then, by utilizing stochastic Lyapunov functional method and some stochastic analysis technique, sufficient conditions for pth (p = 2) moment exponential synchronization are obtained. It is shown that synchronization can be realized by impulsive control. Finally, a numerical example is presented to verify the effectiveness of the proposed criteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A.L. Wu, S.P. Wen, Z.G. Zeng, Inf. Sci. 183, 106 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Thomas, J. Phys. D: Appl. Phys. 46, 093001 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Chen, Z.G. Zeng, P. Jiang, Inf. Sci. 279, 358 (2014)CrossRefGoogle Scholar
  6. 6.
    L. Duan, L.H. Huang, Neural Netw. 57, 12 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Rakkiyappan, A. Chandrasekar, S. Laksmanan, J.H. Park, Complexity 19, 32 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Abdurahman, H.J. Jiang, Z.D. Teng, Neural Netw. 69, 20 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Wang, Y. Shen, Q. Yin, G.D. Zhang, IEEE Trans. Neural Netw. Learn. Syst. 26, 2033 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H.B. Bao, J.H. Park, J.D. Cao, IEEE Trans. Neural Netw. Learn. Syst. 27, 190 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Velmurugan, R. Rakkiyappan, J.D. Cao, Neural Netw. 73, 36 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.J. Gu, Y.G. Yu, H. Wang, J. Franklin Inst. 353, 3657 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Chandrasekar, R. Rakkiyappan, Neurocomputing 173, 1348 (2016)CrossRefGoogle Scholar
  14. 14.
    X.F. Li, J.A. Fang, H.Y. Li, Neural Netw. 93, 165 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Zhang, F.Q. Deng, S.L. Xie, S.X. Luo, Neurocomputing 286, 41 (2018)CrossRefGoogle Scholar
  16. 16.
    X.S. Yang, J.D. Cao, J.L. Qiu, Neural Netw. 65, 80 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Zhao, L.X. Li, H.P. Peng, J. Kurths, J.H. Xiao, Y.X. Yang, Eur. Phys. J. B 88, 109 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X. Wang, K. She, S.M. Zhong, J. Cheng, Neurocomputing 242, 131 (2017)CrossRefGoogle Scholar
  19. 19.
    H.B. Bao, J.D. Cao, J. Kurths, A. Alsaedi, B. Ahmad, Neural Netw. 99, 79 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.F. Song, S.P. Wen, Neurocomputing 156, 121 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Patel, B. Kosko, IEEE Trans. Neural Netw. 19, 1993 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Vinaya, R.P. Ignatius, Nonlinear Dyn. 94, 1133 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Gao, P.Y. Zhu, W.J. Xiong, J.D. Cao, L. Zhang, J. Franklin Inst. 353, 3271 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Applebaum, Lévy Processes and Stochastic Calculus (1st edition, Cambridge University Press, Cambridge, 2004, 2nd edition, 2009)Google Scholar
  25. 25.
    L.W. Zhou, Z.J. Wang, J. Zhou, W.N. Zhou, Neurocomputing 173, 1235 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Yang, W.N. Zhou, P. Shi, X.Q. Yang, X.H. Zhou, H.Y. Su, Nonlinear Dyn. 81, 1179 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Liao, C. Li, T. Huang, IEEE Trans. Neural Netw. Learn. Syst. 25, 1401 (2014)CrossRefGoogle Scholar
  28. 28.
    A.J. Silva, Y. Zhou, T. Rogerson, J. Shobe, J. Balaji, Science 326, 391 (2009)CrossRefGoogle Scholar
  29. 29.
    X.F. Liao, T.W. Huang, IEEE Trans. Neural Netw. Learn. Syst. 26, 3320 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W.N. Zhou, Q.Y. Zhu, P. Shi, H.Y. Su, J.A. Fang, L.W. Zhou, IEEE Trans. Cybern. 44, 2848 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.R. Liu, Z.D. Wang, J.L. Liang, X.H. Liu, IEEE Trans. Cybern. 43, 102 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Ma, Y.M. Kang, Commun. Nonlinear Sci. Numer. Simul. 57, 372 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    W.P. Wang, L.X. Li, H.P. Peng, W.N. Wang, J. Kurths, J.H. Xiao, Y.X. Yang, Nonlinear Dyn. 83, 2143 (2016)CrossRefGoogle Scholar
  34. 34.
    A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations (World Scientific Publishing, Singapore, 1995)Google Scholar
  35. 35.
    V. Kolmanovskii, N. Koroleva, T. Maizenberg, X.R. Mao, A. Matasov, Stoch. Anal. Appl. 21, 819 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Statistics, Xi’an JiaoTong UniversityXi’an, ShaanxiP.R. China

Personalised recommendations