Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 2093–2100 | Cite as

Bogdanov–Takens singularity in the simple memristive time-delay system

  • Yingying Li
  • Jing Yang
  • Zhouchao WeiEmail author
  • Yongjian Liu
Regular Article
  • 11 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

In this paper, a simple memristive system is considered. We obtain existence of Bogdanov–Takens (B–T) bifurcation at the equilibrium in the 2D memristive time-delay system. With the change of two bifurcation parameters, in particular, it will lead to different bifurcations when the delay passes a certain critical value. Based on center manifold and classic normal form method, Hopf, pitchfork, homoclinic, and double limit cycle bifurcation are derived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Fortuna, M. Frasca, M.G. Xibilia, Chua’s circuit implementation: yesterday, today and tomorrow (World Scientific, Singapore, 2009)Google Scholar
  2. 2.
    K.M. Cuomo, A.V. Oppenheim, Control. Chaos 71, 153 (1996)Google Scholar
  3. 3.
    P. Arena, L. Fortuna, M. Frasca, Int. J. Circuit Theory Appl. 30, 349 (2002)CrossRefGoogle Scholar
  4. 4.
    M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, IEEE Trans. Circuits Syst. I. Regul. Pap. 51, 1395 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P.S. Linsay, Phys. Rev. Lett. 47, 1349 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    E. Lindberg, K. Murali, A. Tamasevicius, IEEE Trans. Circuits II 52, 661 (2005)Google Scholar
  7. 7.
    R. Barboza, L.O. Chua, Int. J. Bifurc. Chaos 18, 943 (2008)CrossRefGoogle Scholar
  8. 8.
    C.B. Li, W. Hu, J.C. Sprott, X.H. Wang, Eur. Phys. J. Special Topics 224, 1493 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A. Akgul, C.B. Li, I. Pehlivan, J. Circuits Syst. Comput. 26, 1750190 (2017)CrossRefGoogle Scholar
  10. 10.
    C.B. Li, W.J.C. Thio, J.C. Sprott, R.X. Zhang, T.A. Lu, Chin. Phys. B 26, 124 (2017)Google Scholar
  11. 11.
    C.B. Li, W.J.C. Thio, H.H.C. Iu, T.A. Lu, IEEE Access 6, 12945 (2018)CrossRefGoogle Scholar
  12. 12.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A.P. Dimitrios, K.V. Christos, N.S. Ioannis, M.K. Ioannis, Nonlinear Dyn. 90, 1681 (2017)CrossRefGoogle Scholar
  14. 14.
    B.C. Bao, H. Bao, N. Wang, M. Chen, Q. Xu, Chaos Solitons Fractals 94, 102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.Y. Wang, F. Yuan, G.R. Chen, Y. Zhang, Chaos 28, 013125 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos 18, 3183 (2008)CrossRefGoogle Scholar
  17. 17.
    B. Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  18. 18.
    V.T. Pham, A. Buscarino, L. Fortuna, M. Frasca, Int. J. Bifurc. Chaos 23, 1350073 (2013)CrossRefGoogle Scholar
  19. 19.
    Z.C. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec, Appl. Math. Comput. 347, 265 (2019)MathSciNetGoogle Scholar
  20. 20.
    J.B. Guan, F.Y. Chen, G.X. Wang, Adv. Differ. Equ. 166, 265 (2012)Google Scholar
  21. 21.
    Z.C. Wei, W. Zhang, Z. Wang, M.H. Yao, Int. J. Bifurc. Chaos 25, 1550028 (2015)CrossRefGoogle Scholar
  22. 22.
    Z.C. Wei, V.T. Pham, T. Kapitaniak, Z. Wang, Nonlinear Dyn. 85, 1635 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Hassard, N. Kazarinoff, Y. Wan, Theory and applications of Hopf bifurcation (Cambridge University Press, Cambridge, 1981)Google Scholar
  24. 24.
    G.D. Zhang, Y. Shen, B.S. Chen, Nonlinear Dyn. 73, 2119 (2013)CrossRefGoogle Scholar
  25. 25.
    X. He, C.D. Li, IEEE Trans. Neural Netw. Learn. Syst. 24, 1001 (2013)CrossRefGoogle Scholar
  26. 26.
    X. He, C.D. Li, Y.L. Shu, Neurocomputing 89, 193 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Jiang, Y.L. Song, Appl. Math. Modell. 37, 8091 (2013)CrossRefGoogle Scholar
  28. 28.
    M.A. Han, J. Llibre, J.M. Yang, Int. J. Bifurc. Chaos 28, 1850115 (2018)CrossRefGoogle Scholar
  29. 29.
    W. Jiang, Y. Yuan, Physica D 227, 149 (2007)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T. Faria, L.T. Magalhaes, J. Differ. Equ. 122, 201 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    T. Faria, L.T. Magalhaes, J. Differ. Equ. 122, 181 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Xu, M. Huang, J. Differ. Equ. 244, 582 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    C.R. Zhang, B.D. Zheng, Nonlinear Dyn. 89, 1187 (2017)CrossRefGoogle Scholar
  34. 34.
    S.N. Chow, C. Li, D. Wang, Normal forms and bifurcation of planar vector fields (Cambridge University Press, Cambridge, 1994)Google Scholar
  35. 35.
    J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer, New York, 1983)Google Scholar
  36. 36.
    Y. Kuznetsov, Elements of applied bifurcation theory (Springer, New York, 1995)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yingying Li
    • 1
  • Jing Yang
    • 1
  • Zhouchao Wei
    • 1
    Email author
  • Yongjian Liu
    • 2
  1. 1.School of Mathematics and Physics, China University of GeosciencesWuhanP.R. China
  2. 2.Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal UniversityYulin, GuangxiP.R. China

Personalised recommendations