Advertisement

The European Physical Journal Special Topics

, Volume 228, Issue 10, pp 1925–1941 | Cite as

Complicated dynamics in a memristor-based RLC circuit

  • Chunlai LiEmail author
  • Yang Zhou
  • Yanfeng Yang
  • Hongmin Li
  • Wei Feng
  • Zhaoyu Li
  • Youli Lu
Regular Article
  • 25 Downloads
Part of the following topical collections:
  1. Memristor-based Systems: Nonlinearity, Dynamics and Applications

Abstract

As the fourth basic circuit element, the memristor is usually employed to design chaotic circuit for the special electrical properties. This paper introduces a memristor-based RLC oscillation circuit with fourth-order differential equation. Basic dynamical properties of the system are revealed by analyzing phase portrait, time-domain waveform, Poincaré map, equilibrium point, bifurcation diagram and Lyapunov exponent. Specially, coexisting attractor with the variation of initial value is explored in this system, which means the multi-stability arises. And it is also found that there exists complicated transient dynamical behavior for some initial conditions and parameters, which completely differs from the existed modes of transient chaos and transient period.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.O. Chua, IEEE Trans. Circuits Theory 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    T.F. Fonzin, K. Srinivasan, J. Kengne, F.B. Pelap, A.E.U. Int, J. Electron. C 90, 110 (2018)Google Scholar
  4. 4.
    W. Feng, Y.G. He, C.L. Li, X.M. Su, X.Q. Chen, Complexity 2018, 1 (2018)Google Scholar
  5. 5.
    V.T. Pham, S. Vaidyanathan, C.K. Volos, S. Jafari, N.V. Kuznetsov, T.M. Hoang, Eur. Phys. J. Special Topics 225, 127 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M. Lv, C.N. Wang, G.D. Ren, J. Ma, X.L. Song, Nonlinear Dyn. 85, 1479 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Xu, Y. Jia, J.B. Kirunda, Complexity 2018, 1 (2018)Google Scholar
  8. 8.
    S. Zhu, L. Wang, S. Duan, Neurocomputing 227, 149 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Peng, F. Min, Nonlinear Dyn. 90, 1607 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Bao, N. Wang, Q. Xu, H. Wu, Y. Hu, I.E.E.E. Trans, Circ. Syst. II 64, 977 (2017)Google Scholar
  11. 11.
    B. Muthuswamy, L.O. Chua, Int. J. Bifurc. Chaos 20, 1567 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Teng, H.H.C. Iu, X.Y. Wang, X.K. Wang, Nonlinear Dyn. 77, 231 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, Int. J. Bifurc. Chaos 21, 2629 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Bao, Q. Xu, H. Bao, M. Chen, Electron. Lett. 52, 1008 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Yuan, G. Wang, X. Wang, Chaos 26, 507 (2016)Google Scholar
  16. 16.
    X. Wang, S. Vaidyanathan, C. Volos, V.T. Pham, T. Kapitaniak, Nonlinear Dyn. 1, 1 (2012)Google Scholar
  17. 17.
    J. Kengne, Int. J. Bifurc. Chaos 25, 4285 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    N.H. Alombah, H. Fotsin, K. Romanic, Int. J. Bifurc. Chaos 27, 1750067 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Zhong, M. Peng, M. Shahidehpour, S. Guo, IEEE Access 99, 1 (2018)Google Scholar
  20. 20.
    L. Zhou, C.H. Wang, X. Zhang, W. Yao, Int. J. Bifurc. Chaos 28, 1850050 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Eur. Phys. J. Plus 133, 3 (2018)CrossRefGoogle Scholar
  22. 22.
    J. Kengne, A.N. Negou, Z.T. Njitacke, Nonlinear Dyn. 27, 1008 (2017)Google Scholar
  23. 23.
    Z. Wang, W. Sun, Z. Wei, S. Zhang, Nonlinear Dyn. 82, 577 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Bao, N. Wang, B. Bao, M. Chen, P. Jin, G. Wang, Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    N.H. Alombah, H. Fotsin, K. Romanic, E.M. Ngouonkadi, T. Nguazon, Int. J. Bifurc. Chaos 26, 1650128 (2016)CrossRefGoogle Scholar
  26. 26.
    G.Y. Wang, J.L. He, F. Yuan, C.J. Peng, Chin. Phys. Lett. 30, 110506 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M. Itoh, L.O. Chua, Int. J. Bifurc. Chaos 18, 3183 (2008)CrossRefGoogle Scholar
  28. 28.
    B.C. Bao, P.Y. Wu, H. Bao, Q. Xu, M. Chen, Chaos Soliton Fractals 106, 161 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Galias, Int. J. Bifurc. Chaos 24, 173 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.T. Pham, Commun. Nonlinear Sci. Numer. Simul. 44, 449 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y.B. Zhao, C.K. Tse, J.C. Feng, Y.C. Guo, Circ. Syst. Signal Process. 32, 1013 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Dadras, H.R. Momeni, G. Qi, Nonlinear Dyn. 62, 391 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Sabarathinam, C.K. Volos, K. Thamilmaran, Nonlinear Dyn. 87, 37 (2017)CrossRefGoogle Scholar
  34. 34.
    M.F. Danca, Nonlinear Dyn. 86, 1263 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chunlai Li
    • 1
    Email author
  • Yang Zhou
    • 1
    • 2
  • Yanfeng Yang
    • 1
    • 2
  • Hongmin Li
    • 1
  • Wei Feng
    • 1
  • Zhaoyu Li
    • 1
  • Youli Lu
    • 1
    • 2
  1. 1.College of Physics and Electronics, Hunan Institute of Science and TechnologyYueyangP.R. China
  2. 2.School of Information and Communication Engineering, Hunan Institute of Science and TechnologyYueyangP.R. China

Personalised recommendations