Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2559–2573 | Cite as

Electrokinetic Onsager coefficients and energy conversion in deformable nanofluidic channels

  • Mpumelelo MatseEmail author
  • Michael Eikerling
  • Peter Berg
Regular Article
  • 19 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

This work explores the nonlinear coupling between wall deformation and one-dimensional electrokinetic transport in a nanochannel with negatively charged walls. Within the framework of nonequilibrium thermodynamics, compact formulae are derived for the electrokinetic transport parameters in terms of Onsager phenomenological coefficients and, subsequently, for the energy conversion efficiency. Results confirm that Onsager’s reciprocity principle holds for rigid channels. However, the methodology used to reduce to 1D does not maintain the symmetry of Onsager’s matrix when the channel is deformed due to the introduction of a “fictitious” diffusion term of counter-ions. Furthermore, the model predicts a reduced efficiency of electrokinetic energy harvesting for channels with soft deformable walls.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.L.F. Helmholtz, Wied. Ann. 7, 337 (1879) CrossRefGoogle Scholar
  2. 2.
    M. Smoluchowski, Phys. Z. 6, 529 (1905) Google Scholar
  3. 3.
    P. Berg, K. Ladipo, Proc. R. Soc. A 465, 2663 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    P. Berg, J. Findlay, Proc. R. Soc. A 467, 3157 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    K.O. Ladipo, P. Berg, S. Kimmerle, A. Novruzi, Int. J. Chem. Phys. 134, 074103 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 1980) Google Scholar
  7. 7.
    M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E 70, 021506 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    S. Prakash, A.T. Conlisk, Lab Chip 16, 3855 (2016) CrossRefGoogle Scholar
  9. 9.
    S. Chung, O.S. Anderson, S. Olaf, V.V. Krishnamurthy, Biological membrane ion channels: dynamics, structure, and applications (Springer Science & Business Media, 2007) Google Scholar
  10. 10.
    S.J. Kim, S.H. Ko, K.H. Kang, H. Kwan, J. Han, Nat. Nanotechnol. 5, 297 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    M. Eikerling, A. Kulikovsky, Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation (CRC Press, 2014) Google Scholar
  12. 12.
    H. Daiguji, P. Yang, A.J. Szeri, A. Majumdar, Nano Lett. 4, 2315 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    L. Onsager, Phys. Rev. 37, 405 (1931) ADSCrossRefGoogle Scholar
  14. 14.
    L. Onsager, Phys. Rev. 38, 2265 (1931) ADSCrossRefGoogle Scholar
  15. 15.
    B.J. Kirby, Micro- and nanoscale fluid mechanics: transport in microfluidic devices (Cambridge University Press, 2010) Google Scholar
  16. 16.
    F.F. Reuss, Mem. Soc. Imp. Natur. Moscou. 2, 327 (1809) Google Scholar
  17. 17.
    G. Quincke, Pogg. Ann. Phys. 107, 1 (1859) ADSGoogle Scholar
  18. 18.
    K. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004) CrossRefGoogle Scholar
  19. 19.
    M. Eikerling, A.A. Kornyshev, E. Spohr, Adv. Polym. Sci. 215, 15 (2008) Google Scholar
  20. 20.
    S.G. Rinaldo, C.W. Monroe, T. Romero, W. Mérida, M. Eikerling, Electrochem. Commun. 33, 5 (2011) CrossRefGoogle Scholar
  21. 21.
    M. Eikerling, P. Berg, Soft Matter 7, 5976 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    M. Safiollah, P.A. Melchy, P. Berg, M. Eikerling, J. Phys. Chem. B 119, 8165 (2015) CrossRefGoogle Scholar
  23. 23.
    A.Z. Weber, J. Newman, Chem. Rev. 104, 4679 (2004) CrossRefGoogle Scholar
  24. 24.
    M. Eikerling, A. Kulikovsky, Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation (CRC Press, 2014) Google Scholar
  25. 25.
    A. Kusoglu, M.H. Santare, M.A. Karlsson, J. Polym. Sci. Part B: Polym. Phys. 49, 1506 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    P.-E.A. Melchy, M.H. Eikerling, J. Phys.: Condens. Matter 27, 325103 (2015) Google Scholar
  27. 27.
    K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, Electr. Polym. Actuat. Dev. 3669, 64 (1999) Google Scholar
  28. 28.
    N. Fujiwara, K. Asaka, Y. Nishimura, K. Oguro, E. Torikai, Chem. Mater. 12, 1750 (1999) CrossRefGoogle Scholar
  29. 29.
    A.J. Duncan, D.J. Leo, T.E. Long, Macromolecules 41, 7765 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Peng, A. Morin, P. Huguet, P. Schott, J. Pauchet, J. Phys. Chem. B 115, 12835 (2011) CrossRefGoogle Scholar
  31. 31.
    J.B. Benziger, M.J. Cheah, V. Klika, M. Pavelka, J. Polym. Sci. Part B: Polym. Phys. 53, 1580 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    M. Matse, P. Berg, M. Eikerling, Phys. Rev. E 98, 053101 (2018) ADSCrossRefGoogle Scholar
  33. 33.
    P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, Phys. Rev. E 93, 053108 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    F.A. Morrison Jr., J.F. Osterle, J. Chem. Phys. 43, 2111 (1965) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhang, Y. He, M. Tsutsui, X.S. Miao, M. Taniguchi, Sci. Rep. 7, 46661 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    J. Yang, F. Lu, L.W. Kostiuk, D.Y. Kwok, J. Micromech. Microeng. 13, 963 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Xie, X. Wang, J. Jin, K. Chen, Y. Wang, Appl. Phys. Lett. 93, 163116 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    C.C. Chang, R.J. Yang, Microfluid. Nanofluid. 9, 225 (2010) CrossRefGoogle Scholar
  39. 39.
    Y. Yan, Q. Sheng, C. Wang, J. Xue, H.C. Chang, J. Phys. Chem. C 117, 8050 (2013) CrossRefGoogle Scholar
  40. 40.
    C. Bakli, S. Chakraborty, Electrophoresis 36, 675 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mpumelelo Matse
    • 1
    Email author
  • Michael Eikerling
    • 1
    • 2
  • Peter Berg
    • 3
  1. 1.Department of PhysicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  3. 3.Department of ScienceUniversity of AlbertaCamroseCanada

Personalised recommendations