Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 18, pp 2539–2557 | Cite as

Dynamic Stern layers in charge-regulating electrokinetic systems: three regimes from an analytical approach

  • B. L. WerkhovenEmail author
  • S. Samin
  • R. van Roij
Open Access
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Dynamical Aspects of Mean Field Theories for Electrolytes and Applications

Abstract

We present analytical solutions for the electrokinetic equations at a charged surface with both non-zero Stern-layer conductance and finite chemical reaction rates. We have recently studied the same system numerically [B.L. Werkhoven et al., Phys. Rev. Lett. 120, 264502 (2018)], and have shown that an applied pressure drop across the surface leads to a non-trivial, laterally heterogeneous surface charge distribution at steady state. In this work, we linearise the governing electrokinetic equations to find closed expressions for the surface charge profile and the generated streaming electric field. The main results of our calculations are the identification of three important length and time scales that govern the charge distribution, and consequently the classification of electrokinetic systems into three distinct regimes. The three governing time scales can be associated to (i) the chemical reaction, (ii) diffusion in the Stern layer, and (iii) conduction in the Stern layer, where the dominating (smallest) time scale characterises the regime. In the reaction-dominated regime, we find a constant surface charge with an edge effect and recover the Helmholtz–Smoluchowski equation. In the other two regimes, we find that the surface charge heterogeneity extends over the entire surface, either linearly (diffusion-dominated regime) or nonlinearly (conduction-dominated regime).

References

  1. 1.
    H. Helmholtz, Ann. Phys. 243, 337 (1879) CrossRefGoogle Scholar
  2. 2.
    M. Smoluchowski, Phys. Z. 6, 529 (1905) Google Scholar
  3. 3.
    R.T. Wilkin, D.C. DiGiulio, Environ. Sci. Technol. 44, 4821 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006) CrossRefGoogle Scholar
  5. 5.
    M. Tagliazucchi, I. Szleifer, Mater. Today 18, 131 (2015) CrossRefGoogle Scholar
  6. 6.
    B. Abćassis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, L. Bocquet, New J. Phys. 11, 075022 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    S.J. Kim, Y.C. Wang, J.H. Lee, H. Jang, J. Han, Phys. Rev. Lett. 99, 044501 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    N. Laohakunakorn, U.F. Keyser, Nanotechnology 26, 275202 (2015) CrossRefGoogle Scholar
  9. 9.
    C.B. Picallo, S. Gravelle, L. Joly, E. Charlaix, L. Bocquet, Phys. Rev. Lett. 111, 244501 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Nature 536, 197 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Nature 494, 455 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    J. Lyklema, in Fundamentals of Interface and Colloid Science (Academic Press, MA, 1995), Vol. II Google Scholar
  13. 13.
    J.J. Bikerman, Z. Phys. Chem. 163, 378 (1933) Google Scholar
  14. 14.
    J.J. Bikerman, Kolloid-Zeitschrift 72, 100 (1935) CrossRefGoogle Scholar
  15. 15.
    J.T.G. Overbeek, in Colloid Science: Irreversible Systems, edited by H. Kruyt (Elsevier, Amsterdam, 1952), Vol. 1, Chap. 5, pp. 194–244 Google Scholar
  16. 16.
    J. Lyklema, M. Minor, Colloids Surf. A 140, 33 (1998) CrossRefGoogle Scholar
  17. 17.
    R. Saini, A. Garg, D.P.J. Barz, Langmuir 30, 10950 (2014) CrossRefGoogle Scholar
  18. 18.
    M. Löbbus, J. Sonnfeld, H.P. van Leeuwen, W. Vogelsberger, J. Lyklema, J. Colloid Interface Sci. 229, 174 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    J. Sonnefeld, M. Löbbus, W. Vogelsberger, Colloids Surf. A 195, 215 (2001) CrossRefGoogle Scholar
  20. 20.
    R.W. O’Brien, W.N. Rowlands, J. Colloid Interface Sci. 159, 471 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    P. Leroy, A. Revil, J. Colloid Interface Sci. 270, 371 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    M. Minor, A.J. van der Linde, J. Lyklema, J. Colloid Interface Sci. 203, 177 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    M. Löbbus, H.P. van Leeuwen, J. Lyklema, Colloids Surf. A 161, 103 (2000) CrossRefGoogle Scholar
  24. 24.
    B.W. Ninham, V. Parsegian, J. Theor. Biol. 31, 405 (1971) CrossRefGoogle Scholar
  25. 25.
    D.Y.C. Chan, D.J. Mitchell, J. Colloid Interface Sci. 95, 193 (1983) ADSCrossRefGoogle Scholar
  26. 26.
    I. Popa, P. Sinha, M. Finessi, P. Maroni, G. Papastavrou, M. Borkovec, Phys. Rev. Lett. 104, 228301 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    C.F. Zukoski, D.A. Saville, J. Colloid Interface Sci. 114, 32 (1986) ADSCrossRefGoogle Scholar
  28. 28.
    C.S. Mangelsdorf, L.R. White, J. Chem. Soc. Faraday Trans. 86, 2859 (1990) CrossRefGoogle Scholar
  29. 29.
    B.L. Werkhoven, J.C. Everts, S. Samin, R. van Roij, Phys. Rev. Lett. 120, 264502 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    D. Lis, E.H.G. Backus, J. Hunger, S.H. Parekh, M. Bonn, Science 344, 1138 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Hunter, Foundations of Colloid Science (Clarendon Press, Oxford, UK, 1992) Google Scholar
  32. 32.
    R. Kutner, Phys. Lett. A 81, 239 (1981) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Levin, J.J. Arenzon, M. Sellitto, Europhys. Lett. 55, 767 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    M.D. Carbajal-Tinoco, R. Lopez-Fernandez, J.L. Arauz-Lara, Phys. Rev. Lett. 99, 138303 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    T. Hiemstra, J.C.M.D. Wit, W.H.V. Riemsdijk, J. Colloid Interface Sci. 133, 105 (1989) ADSCrossRefGoogle Scholar
  36. 36.
    C. Lee, C. Cottin-Bizonne, A.L. Biance, P. Joseph, L. Bocquet, C. Ybert, Phys. Rev. Lett. 112, 244501 (2014) ADSCrossRefGoogle Scholar
  37. 37.
    A.S. Khair, T.M. Squires, J. Fluid Mech. 615, 323 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    A.J. Archer, J. Chem. Phys. 130, 014509 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Hansen, I.R. McDonald, in Theory of Simple Liquids (Academic Press, MA, 2013), Vol. IV Google Scholar
  40. 40.
    R. Evans, Adv. Phys. 28, 143 (1979) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations