The quantum particle in a box: what we can learn from classical electrodynamics

  • L. de la Peña
  • A. M. CettoEmail author
  • A. Valdés-Hernández
Regular Article
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics


The problem of a charged particle enclosed in an infinite square potential well is analysed from the point of view of classical theory with the addition of the electromagnetic zero-point radiation field, with the aim to explore the extent to which such an analysis can contribute to enhance our understanding of the quantum behavior. First a proper treatment is made of the freely moving particle subject to the action of the radiation field, involving a frequency cutoff ωc. The jittering motion and the effective structure of the particle are sustained by the permanent action of the zero-point field. As a result, the particle interacts resonantly with the traveling field modes of frequency ωc in its proper frame of reference, which superpose to give rise to a modulated wave accompanying the particle. This is identified with the de Broglie wave, validating the choice of Compton’s frequency for ωc. For the stationary states of particles confined in the potential well, the Lorentz force produced by the accompanying field is shown to lead to discrete values for the mean speed and to an uneven probability distribution that echoes the corresponding quantum distribution. The relevance of the results obtained and the limitations of the classical approach used, are discussed in the context of present-day stochastic electrodynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.W. Marshall, Proc. Roy. Soc. A 276, 475 (1963) ADSGoogle Scholar
  2. 2.
    T.H. Boyer, Phys. Rev. D 11, 790 (1975) ADSCrossRefGoogle Scholar
  3. 3.
    T.H. Boyer, in Foundations of Radiation Theory and Quantum Electrodynamics, edited by A.O. Barut (Plenum Press, London, 1980) Google Scholar
  4. 4.
    L. de la Peña, in Stochastic Processes Applied to Physics and other Related Fields, edited by B. Gómez, S.M. Moore, A.M. Rodríguez-Vargas, A. Rueda (World Scientific, Singapore, 1983) Google Scholar
  5. 5.
    L. de la Peña, A.M. Cetto, The Quantum Dice. An Introduction to Stochastic Electrodynamics (Kluwer Academic Pub., Dordrecht, 1996) Google Scholar
  6. 6.
    D.C. Cole, Y. Zou, J. Sci. Comput. 21, 145 (2004) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Th.M. Nieuwenhuizen, M.T.P. Liska, Phys. Scr. T165, 014006 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    Th.M. Nieuwenhuizen, M.T.P. Liska, Found. Phys. 45, 1190 (2015) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Th.M. Nieuwenhuizen, Entropy 18, 135 (2016) ADSCrossRefGoogle Scholar
  10. 10.
    G. ’t Hooft The Cellular Automaton Interpretation of Quantum Mechanics (Springer Open, Heidelberg, 2016) Google Scholar
  11. 11.
    A. Khrennikov, J. Russ. Laser Res. 38, 1 (2017) CrossRefGoogle Scholar
  12. 12.
    A. Khrennikov, Beyond Quantum (Pan Stanford Publishing, Singapore, 2014) Google Scholar
  13. 13.
    L. de la Peña, A.M. Cetto, A. Valdés-Hernández, The Emerging Quantum. The Physics Behind Quantum Mechanics (Springer, Heidelberg, 2015) Google Scholar
  14. 14.
    J.D. Jackson, Classical Electrodynamics (J. Wiley, New York, 1975) Google Scholar
  15. 15.
    F. Rohrlich, Classical Charged Particles (Addison-Wesley, Reading, MA, 1965) Google Scholar
  16. 16.
    P.W. Milonni, The Quantum Vacuum (Academic Press, New York, 1994) Google Scholar
  17. 17.
    N.N. Bogoliubov, D.V. Shirkov, Quantum Fields (Benjamin, London, 1983) [English translation from the Russian edition Nauka, Moscow 1980] Google Scholar
  18. 18.
    D. Bohm, M. Weinstein, Phys. Rev. 74, 1789 (1948) ADSCrossRefGoogle Scholar
  19. 19.
    G. Bacciagaluppi, A. Valentini, Quantum Theory at the crossroads: Reconsideringthe 1927 Solvay Conference (Cambridge University Press, Cambridge, 2009) Google Scholar
  20. 20.
    I.I. Sibelman, Atomic Spectra and Radiative Transitions (Springer Verlag, Berlin, 1979) Google Scholar
  21. 21.
    L. de la Peña, A.M. Cetto, Found. Phys. 24, 753 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    A.S. Eddington, The Nature of the Physical World (Cambridge University Press, Cambridge, 1928) Google Scholar
  23. 23.
    M. Bunge, Foundations of Physics (Springer, New York, 1967) Google Scholar
  24. 24.
    N. Maxwell, Found. Phys. 12, 607 (1982) ADSCrossRefGoogle Scholar
  25. 25.
    A.E. Allaverdyan, R. Balian, T.M. Nieuwenhuizen, Phys. Rep. 525, 1 (2013) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A.E. Allaverdyan, R. Balian, T.M. Nieuwenhuizen, Ann. Phys. 376, 324 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    T.H. Boyer, Phys. Rev. D 13, 2832 (1976) ADSCrossRefGoogle Scholar
  28. 28.
    E. Schrödinger, Berliner Ber. 1931, 418 (1931) Google Scholar
  29. 29.
    E. Schrödinger, Berliner Ber. 1930, 63 (1930) Google Scholar
  30. 30.
    P. Claverie, L. de la Peña, S. Diner, Stochastic Electrodynamics of nonlinear systems. II Derivation of a reduced Fokker-Planck equation in terms of relevant constants of motion, 1978 (unpublished) Google Scholar
  31. 31.
    T.W. Marshall, P. Claverie, J. Math. Phys. 21, 1819 (1980) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.M. Cetto, L. de la Peña, A. Valdés-Hernández, J. Phys.: Conf. Ser. 504, 012007 (2014) Google Scholar
  33. 33.
    M. Surdin, Found. Phys. 12, 873 (1982) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. de la Peña
    • 1
  • A. M. Cetto
    • 1
    Email author
  • A. Valdés-Hernández
    • 1
  1. 1.Instituto de Física,Universidad Nacional Autónoma de MexicoMexico CityMexico

Personalised recommendations