Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 575–589 | Cite as

Time evolution of localized solutions in 1-dimensional inhomogeneous FPU models

  • F. Martínez-Farías
  • P. Panayotaros
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

We study energy localization in a quartic FPU model with spatial inhomogeneity corresponding to a site-dependent number of interacting neighbors. Such lattices can have linear normal modes that are strongly localized in the regions of high connectivity and there is evidence that some of these localized modes persist in the weakly nonlinear regime. The present study shows examples where oscillations can remain localized for long times. Nonlinear normal modes are approximated by periodic orbits that belong to an invariant subspace of a Birkhoff normal form of the system that is spanned by spatially localized modes [F. Martínez-Farías et al., Eur. Phys. J. Special Topics 223, 2943 (2014), F. Martínez-Farías et al., Physica D 335, 10 (2016)]. The invariant subspace is suggested by the dispersion relation and also depends on the overlap between normal modes. Numerical integration from the approximate normal modes suggests that spatial localization persists over a long time in the weakly nonlinear regime and is especially robust in some disordered lattices, where it persists for large, (1), amplitude motions. Large amplitude localization in these examples is seen to be recurrent, i.e. energy flows back and forth between the initial localization region and its vicinity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Martínez-Farías, P. Panayotaros, A. Olvera, Eur. Phys. J. Special Topics 223, 2943 (2014) ADSCrossRefGoogle Scholar
  2. 2.
    F. Martínez-Farías, P. Panayotaros, Physica D 335, 10 (2016) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Nicolay, Y.H. Sanejouand, Phys. Rev. Lett. 96, 078104 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    B. Juanico, Y.H. Sanejouand, F. Piazza, P. De Los Rios, Phys. Rev. Lett. 99, 238104 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    D. ben-Avraham, M. Tirion, Biophys. J. 68, 1231 (1995) CrossRefGoogle Scholar
  6. 6.
    M. Tirion, Phys. Rev. Lett. 77, 1905 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    F.M. Izrailev, B.V. Chirikov, Soviet Phys. Doklady 11, 30 (1966) ADSGoogle Scholar
  9. 9.
    C. Antonopoulos, T. Bountis, C. Skokos, Int. J. Bifurc. Chaos 16, 1777 (2006) CrossRefGoogle Scholar
  10. 10.
    D. Bambusi, A. Ponno, Commun. Math. Phys. 264, 539 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    H. Christodoulidi, C. Euthymiopoulos, T. Bountis, Phys. Rev. E 81, 016210 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    H. Christodoulidi, C. Euthymiopoulos, Physica D 261, 93 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    S. Flach, A. Ponno, Physica D 237, 908 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    T. Genta, A. Giorgilli, S. Paleari, T. Penati, Phys. Lett. A 376, 2038 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    A. Henrici, T. Kappeler, J. Eur. Math. Soc. 11, 1025 (2009) CrossRefGoogle Scholar
  16. 16.
    D. ben-Avraham, M. Tirion, Physica A 249, 415 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    F. Piazza, Y.H. Sanejouand, Discret. Contin. Dyn. Syst. S 4, 1247 (2011) CrossRefGoogle Scholar
  18. 18.
    M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simulation 8, 3 (1998) CrossRefGoogle Scholar
  19. 19.
    J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, 2016 GNU Octave version 4.2.2 manual: a high-level interactive language for numerical computations, https://doi.org/www.gnu.org/software/octave/doc/interpreter
  20. 20.
    J. Ahrens, U. Dieter, Math. Comput. 27, 927 (1973) Google Scholar
  21. 21.
    F. Martínez-Farías, Ph.D. Thesis, UNAM, 2016 Google Scholar
  22. 22.
    J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Physica D 16, 318 (1985) MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Young, (2014), Available at: http://young.physics.ucsc.edu/115/ (accessed 2017/5/12) Google Scholar
  24. 24.
    I.P. Omelyan, I.M. Mryglod, R. Folk, Comput. Phys. Commun. 151, 272 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    L. Verlet, Phys. Rev. 159, 98 (1967) ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Teukolsky, W.H. Press, Numerical Recipes in C (Cambridge Univ. Press, New York, 2002) Google Scholar
  27. 27.
    F. Piazza, Y.H. Sanejouand, Phys. Biol. 5, 026001 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    R. Castelli, M. Gameiro, J.P. Lessard, https://doi.org/arXiv:1509.08648 (2015)
  29. 29.
    E.J. Doedel, R.C. Paffenroth, H.B. Keller, D.J. Dichmann, J. Galan-Vioque, A. Vanderbauwhede, Int. J. Bifurc. Chaos 13, 1353 (2003) CrossRefGoogle Scholar
  30. 30.
    J. Moser, Commun. Pure Appl. Math. 29, 727 (1976) ADSCrossRefGoogle Scholar
  31. 31.
    A. Weinstein, Inv. Math. 20, 47 (1973) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energetic Systems and Advanced Materials, Escuela Superior de Apan, Universidad Autónoma del Estado de HidalgoApanMexico
  2. 2.Depto. Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations