Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 683–691 | Cite as

Hamiltonian formulation of fractional kinetics

  • Sumiyoshi Abe
Regular Article
  • 20 Downloads
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

Fractional kinetic theory plays a vital role in describing anomalous diffusion in terms of complex dynamics generating semi-Markovian processes. Recently, the variational principle and associated Lévy Ansatz have been proposed in order to obtain an analytic solution of the fractional Fokker–Planck equation. Here, based on the action integral introduced in the variational principle, the Hamiltonian formulation is developed for the fractional Fokker–Planck equation. It is shown by the use of Dirac’s generalized canonical formalism how the equation can be recast in the Liouville-like form. A specific problem arising from temporal nonlocality of fractional kinetics is nonuniqueness of the Hamiltonian: it has two different forms. The non-equal-time Dirac-bracket relations are set up, and then it is proven that both of the Hamiltonians generate the identical time evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Sher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975) ADSCrossRefGoogle Scholar
  3. 3.
    A. Caspi, R. Granek, M. Elbaum, Phys. Rev. Lett. 85, 5655 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Cote, P. Senet, P. Delarue, G.G. Maisuradze, H.A. Sheraga, Proc. Natl. Acad. Sci. USA 109, 10346 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    D.W. Sims et al., Nature (London) 451, 1098 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature (London) 439, 462 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    M.C. González, C.A. Hidalgo, A.-L. Barabási, Nature (London) 453, 779 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    S. Abe, N. Suzuki, Europhys. Lett. 110, 59001 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    S. Abe, N. Suzuki, Acta Geophysica 65, 481 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    B.B. Mandelbrot, J.W. Van Ness, SIAM Rev. 10, 422 (1968) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    T.D. Frank, Nonlinear Fokker–Planck Equations (Springer-Verlag, Berlin, 2005) Google Scholar
  12. 12.
    D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000) Google Scholar
  13. 13.
    R. Hilfer (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000) Google Scholar
  14. 14.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005) Google Scholar
  16. 16.
    R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014) CrossRefGoogle Scholar
  17. 17.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965) ADSCrossRefGoogle Scholar
  18. 18.
    S. Abe, Phys. Rev. E 88, 022142 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999) Google Scholar
  20. 20.
    R. Herrmann, Fractional Calculus: An Introduction for Physicists, 2nd edn. (World Scientific, Singapore, 2014) Google Scholar
  21. 21.
    W.K. Kegel, A. van Blaaderen, Science 287, 290 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    P.A.M. Dirac, Canad. J. Math. 2, 129 (1950) CrossRefGoogle Scholar
  24. 24.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Dover, New York, 2001) Google Scholar
  25. 25.
    S. Abe, A. Oohata, J. Phys.: Conf. Ser. 604, 012001 (2015) Google Scholar
  26. 26.
    R. Balian, M. Vénéroni, Phys. Rev. Lett. 47, 1353 (1981) [Erratum: Phys. Rev. Lett. 47, 1765 (1981)] ADSCrossRefGoogle Scholar
  27. 27.
    O. Éboli, R. Jackiw, S.-Y. Pi, Phys. Rev. D 37, 3557 (1988) ADSCrossRefGoogle Scholar
  28. 28.
    S. Abe, Phys. Rev. E 69, 016102 (2004) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Division, College of Information Science and Engineering, Huaqiao UniversityXiamenP.R. China
  2. 2.Department of Physical EngineeringMie UniversityMieJapan
  3. 3.Institute of Physics, Kazan Federal UniversityKazanRussia

Personalised recommendations