Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 673–682 | Cite as

Alterations in brain connectivity due to plasticity and synaptic delay

  • E. L. Lameu
  • E. E. N. Macau
  • F. S. Borges
  • K. C. Iarosz
  • I. L. Caldas
  • R. R. Borges
  • P. R. Protachevicz
  • R. L. Viana
  • A. M. Batista
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

Brain plasticity refers to brain’s ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronization in a neuronal network with synaptic plasticity. We build a network of Hodgkin–Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the synapses become regulated by both the nature (excitatory or inhibitory) and the frequency of the presynaptic and postsynaptic neuron. A presynaptic excitatory (inhibitory) neuron with higher (lower) frequency enhances the synaptic strength if the postsynaptic excitatory (inhibitory) neuron has lower (higher) frequency. When the delay is increased the network presents a non-trivial topology. Regarding the synchronization, only for small values of the synaptic delay this phenomenon is observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pascual-Leone, A. Amedi, F. Fregni, L.B. Merabet, Annu. Rev. Neurosci. 28, 377 (2005) CrossRefGoogle Scholar
  2. 2.
    B. Kolb, R. Gibb, J. Can. Acad. Child Adolesc. Psychiatry 20, 265 (2011) Google Scholar
  3. 3.
    R.R. Borges, F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, I.L. Caldas, R.L. Viana, M.A.F. Sanjuán, Commun. Nonlinear Sci. Numer. Simul. 34, 12 (2016) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R.R. Borges, F.S. Borges, E.L. Lameu, A.M. Batista, K.C. Iarosz, I.L. Caldas, C.G. Antonopoulos, M.S. Baptista, Neural Netw. 88, 58 (2017) CrossRefGoogle Scholar
  5. 5.
    R. Lestienne, Prog. Neurobiol. 65, 545 (2001) CrossRefGoogle Scholar
  6. 6.
    X.-J. Wang, Physiol. Rev. 90, 1195 (2010) CrossRefGoogle Scholar
  7. 7.
    B.C. Schwab, T. Heida, Y. Zhao, E. Marani, S.A. van Gils, R.J.A. van Wezel, Front. Syst. Neurosci. 7, 60 (2013) CrossRefGoogle Scholar
  8. 8.
    S. Boucetta, S. Chauvette, M. Bazhenov, I. Timofeev, Epilepsia 49, 1925 (2008) CrossRefGoogle Scholar
  9. 9.
    F.S. Borges, P.R. Protachevicz, E.L. Lameu, R.C. Bonetti, K.C. Iarosz, I.L. Caldas, M.S. Baptista, A.M. Batista, Neural Netw. 90, 1 (2017) CrossRefGoogle Scholar
  10. 10.
    E.L. Lameu, F.S. Borges, R.R. Borges, K.C. Iarosz, I.L. Caldas, A.M. Batista, R.L. Viana, J. Kurths, Chaos 26, 043107 (2016) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    E.R. Kandel, J.H. Schwartz, T.M. Jessel, Principles of neural science (Elsevier, Amsterdam, 1991) Google Scholar
  12. 12.
    Y. Hao, Y. Gong, L. Wang, X. Ma, C. Yang, Chaos Solids Fractals 44, 260 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    K. Lashley, Psychol. Bull. 30, 237 (1923) Google Scholar
  14. 14.
    M.C. Diamond, D. Krech, M.R. Rosenzweig, J. Comput. Neurol. 123, 111 (1964) CrossRefGoogle Scholar
  15. 15.
    E.L. Bennett, M.C. Diamond, D. Krech, M.R. Rosenzweig, Science 146, 610 (1964) ADSCrossRefGoogle Scholar
  16. 16.
    P. Bach-y-Rita, Acta Neurol. Scand. 43, 417 (1967) CrossRefGoogle Scholar
  17. 17.
    D.O. Hebb, The organization of behavior (Wiley, New York, 1949) Google Scholar
  18. 18.
    G.Q. Bi, M.M. Poo, J. Neurosci. 18, 10464 (1998) CrossRefGoogle Scholar
  19. 19.
    J.S. Haas, T. Nowotny, H.D.I. Abarbanel, J. Neurophysiol. 96, 3305 (2006) CrossRefGoogle Scholar
  20. 20.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 11, 500 (1952) CrossRefGoogle Scholar
  21. 21.
    S. Kalitzin, B.W. Van Dijk, H. Spekreijse, Biol. Cybern. 83, 139 (2000) CrossRefGoogle Scholar
  22. 22.
    A. Artola, S. Bröcher, W. Singer, Nature 347, 69 (1990) ADSCrossRefGoogle Scholar
  23. 23.
    G.Q. Bi, M.M. Poo, Annu. Rev. Neurosci. 24, 139 (2001) CrossRefGoogle Scholar
  24. 24.
    S.S. Talathi, D.U. Hwang, W.L. Ditto, J. Comput. Neurosci. 25, 262 (2008) MathSciNetCrossRefGoogle Scholar
  25. 25.
    H.D.I. Abarbanel, S.S. Talathi, Phys. Rev. Lett. 96, 148104 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    C.R. Noback, N.L. Strominger, R.J. Demarest, D.A. Ruggiero, The Human Nervous System: Structure and Function (Humana Press, Totowa, NJ, 2005) Google Scholar
  27. 27.
    S. Rieubland, A. Roth, M. Häusser, Neuron 4, 913 (2014) CrossRefGoogle Scholar
  28. 28.
    S. Yu, D. Huang, W. Singer, D. Nikolić, Cerab. Cortex 18, 2891 (2008) CrossRefGoogle Scholar
  29. 29.
    P. Bonifazi, M. Goldin, M.A. Picardo, I. Jorquera, A. Cattani, G. Bianconi, A. Represa, Y. Ben-Ari, R. Cossart, Science 326, 1419 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Kuramoto, Chemical oscillations, waves and turbulence (Spring-Verlag, Berlin, 1984) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. L. Lameu
    • 1
  • E. E. N. Macau
    • 1
    • 2
  • F. S. Borges
    • 3
  • K. C. Iarosz
    • 3
  • I. L. Caldas
    • 3
  • R. R. Borges
    • 4
  • P. R. Protachevicz
    • 5
  • R. L. Viana
    • 6
  • A. M. Batista
    • 3
    • 5
    • 7
  1. 1.National Institute for Space ResearchSão José dos CamposBrazil
  2. 2.Federal University of São PauloSão José dos CamposBrazil
  3. 3.Physics Institute, University of São PauloSão PauloBrazil
  4. 4.Department of MathematicsFederal Technological University of ParanáPonta GrossaBrazil
  5. 5.Science Post-Graduation, State University of Ponta GrossaPonta GrossaBrazil
  6. 6.Physics Department, Federal University of ParanáCuritibaBrazil
  7. 7.Department of Mathematics and StatisticsState University of Ponta GrossaPonta GrossaBrazil

Personalised recommendations