Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative

  • 52 Accesses

Abstract

We derive the general prolongation formula for system of fractional partial differential equations (FPDEs) with Caputo derivative involving m dependent variables and n independent variables. A systematic computational method to derive Lie point symmetries of nonlinear FPDEs with Caputo derivative is given, and we illustrate its applicability through system of time fractional diffusion equations and space fractional diffusion equation in Caputo sense. We observe that the set of Lie point symmetries for a given fractional differential equation in Caputo sense is same as the corresponding fractional differential equation in Riemann–Liouville sense. Also we construct their exact solutions in terms of Mittag–Leffler function by using the obtained Lie point symmetries.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Heidelberg, 2010)

  2. 2.

    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

  3. 3.

    S. Samko, A.A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, Chur, 1993)

  4. 4.

    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  5. 5.

    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

  6. 6.

    A. Atangana, Chaos Solitons Fractals 102, 396 (2017)

  7. 7.

    K.M. Owolabi, A. Atangana, Chaos Solitons Fractals 128, 280 (2019)

  8. 8.

    A. Akgül, Chaos Solitons Fractals 114, 478 (2018)

  9. 9.

    T. Abdeljawad, A. Atangana, J.F.G. Aguilar, F. Jarad, Phys. A Stat. Mech. Appl. 536, 122494 (2019)

  10. 10.

    T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 77, 1309 (2014)

  11. 11.

    T. Bakkyaraj, R. Sahadevan, J. Fract. Calc. Appl. 5, 37 (2014)

  12. 12.

    T. Bakkyaraj, R. Sahadevan, Int. J. Appl. Comput. Math. 2, 113 (2016)

  13. 13.

    M.S. Hashemi, Z. Balmeh, Eur. Phys. J. Plus 133, 427 (2018)

  14. 14.

    Q. Huang, R. Zhdanov, Phys. A 409, 110 (2014)

  15. 15.

    R. Najafi, F. Bahrami, M.S. Hashemi, Nonlinear Dyn. 87, 1785 (2017)

  16. 16.

    R. Sahadevan, T. Bakkyaraj, Fract. Calc. Appl. Anal. 18, 146 (2015)

  17. 17.

    S. Sahoo, S. Saha Ray, Eur. Phys. J. Plus 134, 83 (2019)

  18. 18.

    G.W. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations (Springer, Heidelberg, 2002)

  19. 19.

    P.E. Hydon, Symmetry Methods for Differential Equations (Cambridge University Press, Cambridge, 2000)

  20. 20.

    N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential equations—Symmetries, Exact solutions and Conservation Laws, vol. 1 (CRC Press, New York, 1994)

  21. 21.

    M. Lakshmanan, P. Kaliappan, J. Math. Phys. 24, 795 (1983)

  22. 22.

    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, Heidelberg, 1986)

  23. 23.

    L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

  24. 24.

    E. Buckwar, Y. Luchko, J. Math. Anal. Appl. 227, 81 (1998)

  25. 25.

    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Vestnik USATU 9, 125 (2007). (in Russian)

  26. 26.

    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Phys. Scr. T 136, 014016 (2009)

  27. 27.

    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Ufa Math. J. 4, 54 (2012)

  28. 28.

    R. Sahadevan, T. Bakkyaraj, J. Math. Anal. Appl. 393, 341 (2012)

  29. 29.

    T. Bakkyaraj, R. Sahadevan, Nonlinear Dyn. 80, 447 (2015)

  30. 30.

    T. Bakkyaraj, R. Sahadevan, Pramana J. Phys. 85, 849 (2015)

  31. 31.

    D. Baleanu, M. Inc, A. Yusuf, A.I. Aliyu, Commun. Nonlinear Sci. Numer. Simul. 59, 222 (2018)

  32. 32.

    V.D. Djordjevic, T.M. Atanackovic, J. Comput. Appl. Math. 212, 701 (2008)

  33. 33.

    J. Hu, Y. Ye, S. Shen, J. Zhang, Appl. Math. Comput. 233, 439 (2014)

  34. 34.

    R. Gorenflo, Y. Luchko, F. Mainardi, J. Comput. Appl. Math. 118, 175 (2000)

  35. 35.

    R.A. Leo, G. Sicuro, P. Tempesta, Fract. Calc. Appl. Anal. 20, 212 (2017)

  36. 36.

    P. Prakash, R. Sahadevan, Nonlinear Dyn. 89, 305 (2017)

  37. 37.

    R. Sahadevan, P. Prakash, Chaos Solitons Fractals 104, 107 (2017)

  38. 38.

    G. Wang, X. Liu, Y. Zhang, Commun. Nonlinear Sci. Numer. Simul. 18, 2321 (2013)

  39. 39.

    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, in Hand Book of Fractional Calculus with Applications, vol. 2, ed. by K. Anatoly, Y. Luchko (De Gruyter, Berlin, 2019), p. 65. https://doi.org/10.1515/9783110571660-004

  40. 40.

    R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, in Hand Book of Fractional Calculus with Applications, vol. 2, ed. by K. Anatoly, Y. Luchko (De Gruyter, Berlin, 2019), p. 353. https://doi.org/10.1515/9783110571660-016

Download references

Acknowledgements

The author would like to thank Prof. R.Sahadevan for the proof reading and suggestions for the improvement in this work.

Author information

Correspondence to T. Bakkyaraj.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakkyaraj, T. Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative . Eur. Phys. J. Plus 135, 126 (2020). https://doi.org/10.1140/epjp/s13360-020-00170-9

Download citation