Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effective acid corrosion inhibitors for X60 steel under turbulent flow condition based on benzimidazoles: electrochemical, theoretical, SEM, ATR-IR and XPS investigations

  • 38 Accesses

Abstract

The corrosion inhibition properties of two benzimidazole derivatives 2-(2-Bromophenyl)-1H-benzimidazole (BHB) and 2-(2-Bromophenyl)-1-methyl-1H-benzimidazole (BMB) for X60 steel in 1 M HCl solution were investigated under laminar and turbulent flow conditions. Experimental methods (electrochemical impedance spectroscopy, linear polarization and potentiodynamic polarization) were complemented with scanning electron microscopy, attenuated total reflectance infrared spectroscopy and X-ray photoelectron spectroscopy. The results obtained all agree that the protonation of BHB and BMB facilitated their protective adsorption on the steel. Although turbulent flow condition increased the corrosion rate, BHB and BMB provided significant corrosion protection for the carbon steel in the acid medium. The presence of a methyl group on the benzimidazole ring conferred greater corrosion inhibition property on BMB when compared with BHB. Theoretical calculations provided more insight into the inhibitor–steel interaction at the atomic and molecular levels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    I.B. Obot, I.B. Onyeachu, N. Wazzan, A.H. Alamri, Theoretical and experimental investigation of two alkyl carboxylates as corrosion inhibitor for steel in acidic medium. J. Mol. Liq. 279, 190–207 (2019)

  2. 2.

    I.B. Obot, N.O. Obi-Egbedi, Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corros. Sci. 52, 657–660 (2010)

  3. 3.

    I.B. Obot, I.B. Onyeachu, A.M. Kumar, Sodium alginate: a promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium. Carbohydr. Polym. 178, 200–208 (2017)

  4. 4.

    C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, I.B. Obot, Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C 120, 11598–11611 (2016)

  5. 5.

    I.B. Obot, E.E. Ebenso, M.M. Kabanda, Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. J. Environ. Chem. Eng. 1, 431–439 (2013)

  6. 6.

    M.A. Chidiebere, L. Nnanna, C.B. Adindu, K.L. Oguzie, B. Okolue, B.I. Onyeachu, Inhibition of acid corrosion of mild steel using delonix regia leaves extract. Int. Lett. Chem. Phys. Astron. 69, 74–86 (2016)

  7. 7.

    B. Mernari, H. El Attari, M. Traisnel, F. Bentiss, M. Lagrenee, Inhibiting effects of 3,5-bis(N-pyridyl)-4-amino-1,2,4-triazoles on the corrosion for mild steel in 1 M HCl medium. Corros. Sci. 40(2), 391–399 (1998)

  8. 8.

    F. Bentiss, C. Jama, B. Mernari, H. El Attari, L. El Kadi, M. Lebrini, M. Traisnel, M. Lagrenee, Corrosion control of mild steel using 3, 5-bis (4-methoxyphenyl)-4-amino-1, 2, 4-triazole in normal hydrochloric acid medium. Corros. Sci. 51(8), 1628–1635 (2009)

  9. 9.

    K.R. Ansari, M.A. Quraishi, A. Singh, Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: an experimental and quantum chemical study. J. Ind. Eng. Chem. 25, 89–98 (2015)

  10. 10.

    F. El-Hajjaji, M. Messali, A. Aljuhani, M.R. Aouad, B. Hammouti, M.E. Belghiti, D.S. Chauhan, M.A. Quraishi, Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies. J. Mol. Liq. 249, 997–1008 (2018)

  11. 11.

    M. Lagrenee, B. Mernari, M. Bouanis, M. Taisnel, F. Bentiss, Study of the mechanism and inhibiting efficiency of 3, 5-bis (4-methylthiophenyl)-4H-1, 2, 4-triazole on mild steel corrosion in acidic media. Corros. Sci. 44, 573–588 (2002)

  12. 12.

    Y. Tang, F. Zhang, S. Hu, Z. Cao, Z. Wu, W. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: gravimetric, electrochemical, SEM and XPS studies. Corros. Sci. 74, 271–282 (2013)

  13. 13.

    X. Wang, Y. Wan, Y. Zeng, Y. Gu, Investigation of benzimidazole compound as a novel corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 7, 2403–2415 (2012)

  14. 14.

    X. Wang, The inhibition effect of bis-benzimidazole compound for mild steel in 0.5 M HCl solution. Int. J. Electrochem. Sci. 7, 11149–11160 (2012)

  15. 15.

    I. Ahamad, M.A. Quraishi, Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media. Corros. Sci. 51, 2006–2013 (2009)

  16. 16.

    M. Yadav, S. Kumar, T. Purkait, L.O. Olasunkanmi, I. Bahadur, E.E. Ebenso, Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. J. Mol. Liq. 213, 122–138 (2016)

  17. 17.

    A. Dutta, S.K. Saha, U. Adhikari, P. Banerjee, D. Sukul, Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: a combined experimental and theoretical approach. Corros. Sci. 123, 256–266 (2017)

  18. 18.

    Z. Cao, Y. Tang, H. Cang, J. Xu, G. Lu, W. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: theoretical studies. Corros. Sci. 83, 292–298 (2014)

  19. 19.

    X. Wang, H. Yang, F. Wang, An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros. Sci. 53, 113–121 (2011)

  20. 20.

    J. Aljourani, K. Raeissi, M.A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corros. Sci. 51, 1836–1843 (2009)

  21. 21.

    S. Ramachandran, B.L. Tsai, M. Blanco, H. Chen, Y. Tang, W.A. Goddard, Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 12, 6419–6428 (1996)

  22. 22.

    B.P. Binks, P.D.I. Fletcher, I.E. Salama, Quantitative prediction of the reduction of corrosion inhibitor effectiveness due to parasitic adsorption onto a competitor surface. Langmuir 27, 469–473 (2011)

  23. 23.

    H. Ashassi-Sorkhabi, E. Asghari, Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a green inhibitor. Electrochim. Acta 54, 162–167 (2008)

  24. 24.

    X. Jiang, Y.G. Zheng, W. Ke, Effect of flow velocity and entrained sand on inhibitor performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution. Corros. Sci. 47, 2636–2658 (2005)

  25. 25.

    B.R. Tian, Y.F. Cheng, Electrochemical corrosion behavior of X-65 steel in the simulated oil and sand slurry. I: effects of hydrodynamic condition. Corros. Sci. 50, 773–779 (2008)

  26. 26.

    P. Bommersbach, C. Alemany-Dumont, J.P. Millet, B. Normand, Hydrodynamic effect on the behavior of a corrosion inhibitor film: characterization by electrochemical impedance spectroscopy. Electrochim. Acta 51, 4011–4018 (2006)

  27. 27.

    N. Ochoa, F. Moran, N. Pebere, B. Tribollet, Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts. Corros. Sci. 47, 593–604 (2005)

  28. 28.

    T. Douadi, H. Hamani, D. Daoud, M. Al-Noaimi, S. Chafaa, Effect of temperature and hydrodynamic conditions on corrosion inhibition of an azomethine compounds for mild steel in 1 M HCl solution. J. Taiwan Inst. Chem. Eng. 71, 388–404 (2017)

  29. 29.

    A. Kosari, M.H. Moayed, A. Davoodi, R. Parvizi, M. Momeni, H. Eshghi, H. Moradi, Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci. 78, 138–150 (2014)

  30. 30.

    E. Barmatov, T. Hughes, M. Nagl, Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions. Corros. Sci. 92, 85–94 (2015)

  31. 31.

    I.B. Obot, A. Madhankumar, S.A. Umoren, Z.M. Gasem, Surface protection of mild steel using benzimidazole derivatives: experimental and theoretical approach. J. Adhes. Sci. Technol. 29, 2130–2152 (2015)

  32. 32.

    B. Poulson, Electrochemical measurements in flowing solutions. Corros. Sci. 23, 391–430 (1983)

  33. 33.

    I.B. Onyeachu, I.B. Obot, A.A. Sorour, M.I. Abdul-Rashid, Green corrosion inhibitor for oilfield application I: electrochemical assessment of 2-(2-pyridyl) benzimidazole for API X60 steel under sweet environment in NACE brine ID196. Corros. Sci. 150, 183–193 (2019)

  34. 34.

    X. Peng, Y. Zhang, J. Zhao, F. Wang, Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles. Electrochim. Acta 51, 4922–4927 (2006)

  35. 35.

    J. Kestin, H.E. Khalifa, R.J. Correla, Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20–150 °C and the pressure range 0.1–35 MPa. J. Phys. Chem. Ref. Data 10(1), 71–87 (1981)

  36. 36.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani et al., Gaussian 16, Revision A. 03 (Gaussian Inc., Wallingford, 2016)

  37. 37.

    A.D. Becke, Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

  38. 38.

    R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 6 (Semichem Inc., Shawnee Mission, 2016)

  39. 39.

    B. Mennucci, J. Tomasi, R. Cammi, J.R. Cheeseman, M.J. Frisch, F.J. Devlin, S. Gabriel, P.J. Stephens, Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106(25), 6102–6113 (2002)

  40. 40.

    S. Satoh, H. Fujimoto, H. Kobayashi, Theoretical study of NH3 adsorption on Fe (110) and Fe (111) surfaces. J. Phys. Chem. B 110(10), 4846–4852 (2006)

  41. 41.

    L. Guo, S. Zhu, S. Zhang, Q. He, W. Li, Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 87, 366–375 (2014)

  42. 42.

    F. Bazooyar, F.A. Momany, K. Bolton, Validating empirical force fields for molecular-level simulation of cellulose dissolution. J. Comput. Theor. Chem. 984, 119–127 (2012)

  43. 43.

    P.P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. der Physic 369(3), 253–287 (1921)

  44. 44.

    S. Kumar, D. Sharma, P. Yadav, M. Yadav, Experimental and quantum chemical studies on corrosion inhibition effect of synthesized organic compounds on N80 Steel in hydrochloric acid. Ind. Eng. Chem. Res. 52, 14019–14029 (2013)

  45. 45.

    A.A. Mohammed, K.F. Khaled, Q. Moshen, H.A. Arida, A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros. Sci. 52, 1684–1695 (2010)

  46. 46.

    C.K. Ingold, Structure and mechanism in organic chemistry (Cornell University Press, Ithaca, 1959)

  47. 47.

    S.A. Haladau, S.A. Umoren, S.A. Ali, M.M. Solomon, A.I. Mohammed, Synthesis, characterization and electrochemical evaluation of anticorrosion property of a tetrapolymer for carbon steel in strong acid media. Chin. J. Chem. Eng. (2018). https://doi.org/10.1016/j.cjche.2018.07.015

  48. 48.

    Z.B. Wang, H.X. Hu, Y.G. Zheng, Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions. Corros. Sci. 130, 203–217 (2018)

  49. 49.

    C.H. Hsu, F. Mansfeld, Technical note: concerning the conversion of the constant phase element parameter Yo into a capacitance. Corrosion 57, 747–748 (2001)

  50. 50.

    M. Stern, A.L. Geary, Electrochemical polarization, 1. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104(12), 751–752 (1957)

  51. 51.

    T.S. Xavier, N. Rashid, I.H. Joe, Vibrational spectra and DFT study of anticancer active molecule 2-(4-Bromophenyl)-1H-benzimidazole by normal coordinate analysis. Spectrochim. Acta A 78, 319–326 (2011)

  52. 52.

    G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. 1 (Adam Hilger, London, 1974)

  53. 53.

    C. Birsan, D. Predoi, E. Andronescu, IR and thermal studies of iron oxide nanoparticles in a bioceramic matrix. J. Optoelectron. Adv. Mater. 9(6), 1821–1824 (2007)

  54. 54.

    E.A. Noor, A.H. Al-Moubaraki, Corrosion behavior of mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 3, 806–818 (2008)

  55. 55.

    J. Galvele, Transport processes in passivity breakdown—II. Full hydrolysis of the metal ions. Corros. Sci. 21(8), 551–579 (1981)

  56. 56.

    F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Performance and theoretical study on corrosion inhibition on 2-(4-pyridyl) benzimidazole for steel in hydrochloric acid. Corros. Sci. 61, 1–9 (2012)

  57. 57.

    M.M. Solomon, S.A. Umoren, I.B. Obot, A.A. Sorour, H. Gerengi, Exploration of dextran for application as corrosion inhibitor for steel in strong acid Environment: effect of molecular weight, modification, and temperature on efficiency. ACS Appl. Mater. Interfaces 10, 28112–28129 (2018)

  58. 58.

    M.M. Solomon, H. Gerengi, S.A. Umoren, N.B. Essien, U.B. Essien, E. Kaya, Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media. Carbohydr. Polym. 181, 43–55 (2018)

  59. 59.

    F. Bentiss, M. Traisnel, L. Gengembre, M. Lagrenee, Inhibition of acidic corrosion of mild steel by 3.5-diphenyl-4H-1,2,4-triazole. Appl. Surf. Sci. 161, 194–202 (2000)

  60. 60.

    W. Zhang, C. Kong, G. Lu, Super-paramagnetic nano-Fe3O4/graphene for visible-light-driven hydrogen evolution. Chem. Commun. 51, 10158–10161 (2015)

  61. 61.

    B.I. Onyeachu, X. Peng, E.E. Oguzie, I. Digbo, Characterizing the electrochemical corrosion behavior of a Ni-28 wt% Al composite coating in 3.5% NaCl solution. Port. Electrochim. Acta. 33(2), 69–83 (2015)

  62. 62.

    M. Chevalier, F. Robert, N. Amusant, M. Traisnel, C. Ross, M. Lebrini, Enhanced corrosion resistance of mild steel in 1 M hydrochloric acid solution by alkaloids extracts from Aniba rosaeodora plant: electrochemical, phytochemical and XPS studies. Electrochim. Acta 131, 96–105 (2014)

  63. 63.

    R.J. Chin, K. Nobe, Electrodissolution kinetics of iron in chloride solutions III. Acidic solutions. J. Electrochem. Soc. 119(11), 1457–1461 (1972)

  64. 64.

    D.R. MacFarlane, S.I. Smedley, The dissolution mechanism of iron in chloride solutions. J. Electrochem. Soc. 133(11), 2240–2244 (1986)

  65. 65.

    T.P. Hoar, D.C. Mears, G.P. Rothwell, The relationships between anodic passivity, brightening and pitting. Corros. Sci. 4, 279–289 (1965)

  66. 66.

    C.Y. Chao, L.F. Lin, D.D. Macdonald, A point defect model for anodic passive films I. Film growth kinetics. J. Electrochem. Soc. 128, 1187–1194 (1981)

  67. 67.

    J.O. Bockris, A. Swinkels, A adsorption of n-decylamine on solid metal electrodes. J. Electrochem. Soc. 111(6), 736–743 (1964)

  68. 68.

    A.C. Maduabuchi, C.E. Ogukwe, K.L. Oguzie, C.N. Eneh, E.E. Oguzie, Corrosion inhibition and adsorption behavior of Punica granatum extract on mild steel in acidic environments and theoretical studies. Ind. Eng. Chem. Res. 51, 668–677 (2012)

  69. 69.

    I.B. Obot, Z.M. Gasem, Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros. Sci. 83, 359–366 (2014)

  70. 70.

    J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren, L. Yu, Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros. Sci. 56, 176–183 (2011)

  71. 71.

    L. Guo, W. Dong, S. Zhang, Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives. RSC Adv. 4, 41956–41967 (2014)

Download references

Acknowledgements

Ikenna B. Onyeachu acknowledges the Center of Research Excellence in Corrosion (CoRE–C), at the Research Institute of King Fahd University of Petroleum and Minerals, Saudi Arabia, for the award of a Postdoctoral Fellowship. Aeshah H. Alamri acknowledges the Scientific and High-Performance Computing Center at Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, for providing technical services and resources for this project.

Author information

Correspondence to Ime Bassey Obot.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onyeachu, I.B., Obot, I.B., Alamri, A.H. et al. Effective acid corrosion inhibitors for X60 steel under turbulent flow condition based on benzimidazoles: electrochemical, theoretical, SEM, ATR-IR and XPS investigations. Eur. Phys. J. Plus 135, 129 (2020). https://doi.org/10.1140/epjp/s13360-020-00167-4

Download citation