Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamic analysis of time fractional order oxygen in a plankton system

Abstract

Oxygen production by marine phytoplankton has great importance to reveal the underlying structure of the aquamarine ecosystem. Any change in phytoplankton productivity may influence the marine biodiversity substantially as in fisheries and food supplies; hence, working on plankton is so crucial to detail the ocean biology. In this paper, we study a fractional model for the dynamics of oxygen, phytoplankton and zooplankton within Caputo sense to detail predation effect on oxygen-plankton system. We investigate into this time fractional model by the help of fractional numerical calculations and the parameters are chosen hypothetically in line with the results obtained from classical differential equations. We observe that species distribution and oxygen concentration show similar properties in fractional case while \(\alpha = 1\) with the classical case; it foresees potential oxygen depletion under determined environmental conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G. Harris, Phytoplankton Ecology: Structure, Function and Fluctuation (Springer, Berlin, 2012)

  2. 2.

    B. Moss, Ecology of Fresh Waters: A View for the Twenty-First Century (Wiley, New York, 2010)

  3. 3.

    T. Gaarder, Investigations of the production of plankton in the Oslo Fjord. Rapports et proces-verbaux des reunions. Conseil International pour 1’Exploration de la Mer, vol. 42, pp. 1–48 (1927)

  4. 4.

    E. Paasche, Nitrogen Cycling in Coastal Marine Environments (1988), pp. 33–57

  5. 5.

    M. Bengfort, U. Feudel, F.M. Hilker, H. Malchow, Ecol. Complex. 20, 185–194 (2014)

  6. 6.

    N.D. Lewis, A. Morozov, M.N. Breckels, M. Steinke, E.A. Codling, Math. Model. Nat. Phenom. 8(6), 25–44 (2013)

  7. 7.

    H. Malchow, S. Petrovskii, V., F.M. Hilker, NOVA ACT. LC. NF, 88(332), 325–340 (2003)

  8. 8.

    H. Malchow, S.V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation (Chapman and Hall/CRC, Cambridge, 2007)

  9. 9.

    S.V. Petrovskii, H. Malchow, Mathematical models of marine ecosystems. Mathematical Models-Volume III vol. 2, p. 27 (2009)

  10. 10.

    A.M. Edwards, J. Brindley, Bull. Math. Biol. 61(2), 303–339 (1999)

  11. 11.

    C. Dai, M. Zhao, H. Yu, Ecol. Complex. 26, 29–36 (2016)

  12. 12.

    B. Mukhopadhyay, R. Bhattacharyya, Ecol. Model. 198(1–2), 163–173 (2006)

  13. 13.

    T. Zhang, W. Wang, Appl. Math. Model. 36(12), 6225–6235 (2012)

  14. 14.

    W. Allegretto, C. Mocenni, A. Vicino, J. Math. Biol. 51(4), 367–388 (2005)

  15. 15.

    A.K. Misra, Nonlinear Anal. Model. Control 15(2), 185–198 (2010)

  16. 16.

    Y. Sekerci, S. Petrovskii, Math. Model. Nat. Phenom. 10(2), 96–114 (2015)

  17. 17.

    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 (Elsevier, New York, 1998)

  18. 18.

    M. Caputo, M. Fabrizio, Progress Fract. Differ. Appl. 1(2), 1–13 (2015)

  19. 19.

    A. Atangana, D. Baleanu, Therm. Sci. 20(2), 757–763 (2016)

  20. 20.

    M. Yavuz, E. Bonyah, Phys. A 525, 373–393 (2019)

  21. 21.

    S. Qureshi, A. Yusuf, Eur. Phys. J. Plus 134(4), 171 (2019)

  22. 22.

    E. Bas, B. Acay, R. Ozarslan, Chaos 29(2), 023110 (2019)

  23. 23.

    E. Bas, R. Ozarslan, Chaos Solitons Fractals 116, 121–125 (2018)

  24. 24.

    S.C. Eze, M.O. Oyesanya, Math. Clim. Weather Forecast 5(1), 1–11 (2019)

  25. 25.

    B. Ghanbari, J.F. Gómez-Aguilar, Chaos Solitons Fractals 116, 114–120 (2018)

  26. 26.

    M.S. Asl, M. Javidi, J. Comput. Appl. Math. 339, 193–207 (2018)

  27. 27.

    M. Javidi, B. Ahmad, Ecol. Model. 318, 8–18 (2015)

  28. 28.

    A. Dokoumetzidis, P. Macheras, J. Pharmacokinet. Phar 36(2), 165–178 (2009)

  29. 29.

    I. Petrás, R.L. Magin, Commun. Nonlinear Sci. Numer. Simul. 16(12), 4588–4595 (2011)

  30. 30.

    J.K. Popović, M.T. Atanacković, A.S. Pilipović, M.R. Rapaić, S. Pilipović, T.M. Atanacković, J. Pharmacokinet. Phar. 37(2), 119–134 (2010)

  31. 31.

    C.M. Ionescu, Commun. Nonlinear Sci. Numer. Simul. 45, 29–34 (2017)

  32. 32.

    C.M. Ionescu, in Fractional Calculus (Nova Science Publishers, 2015), pp. 243–258

  33. 33.

    A. Chevalier, D. Copot, C.M. Ionescu, R. De Keyser, Fractional order impedance models as rising tools for quantification of unconscious analgesia, in 21st Mediterranean Conference on Control and Automation. IEEE (2013), pp. 206–212

  34. 34.

    C. Ionescu, A. Lopes, D. Copot, J.T. Machado, J.H.T. Bates, Commun. Nonlinear Sci. Numer. Simul. 51, 141–159 (2017)

  35. 35.

    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29(1–4), 3–22 (2002)

  36. 36.

    K. Diethelm, A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und Wissenschaftliches Rechnen 1999, 57–71 (1998)

  37. 37.

    R. Garrappa, Int. J. Comput. Math. 87(10), 2281–2290 (2010)

  38. 38.

    R. Garrappa, Short Tutorial: Solving Fractional Differential Equations by Matlab Codes (Department of Mathematics, University of Bari, Bari, 2014)

  39. 39.

    R. Garappa, Predictor–Corrector PECE Method for Fractional Differential Equations. https://www.mathworks.com/matlabcentral/fileexchange/32918 (2014). Accessed by 25 Sept. 2019

  40. 40.

    D. Sornette, Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer, Berlin, 2006)

  41. 41.

    Y. Chen, A.Y. Leung, Bifurcation and Chaos in Engineering (Springer, Berlin, 2012)

  42. 42.

    H. Danylchuk, L. Kibalnyk, O. Serdiuk, Study of critical phenomena in economic systems using a model of damped oscillations, in SHS Web of Conferences, Vol. 65. EDP Sciences (2019), p. 06008

  43. 43.

    J. Guckenheimer, P. Holmes, J. Appl. Mech. 51(4), 947 (1984)

  44. 44.

    S. Petrovskii, Y. Sekerci, E. Venturino, J. Theor. Biol. 424, 91–109 (2017)

Download references

Acknowledgements

The authors are thankful to Sergei Petrovskii (University of Leicester) for his guidance with to the oxygen–plankton model being created. We would like to thank the editor and reviewer for careful reading, and constructive comments.

Author information

Correspondence to Ramazan Ozarslan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekerci, Y., Ozarslan, R. Dynamic analysis of time fractional order oxygen in a plankton system. Eur. Phys. J. Plus 135, 88 (2020). https://doi.org/10.1140/epjp/s13360-020-00111-6

Download citation