Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field

  • 11 Accesses


Buckling and post-buckling behaviors of simply supported microplates in complex environment are studied, where elastic foundation and hygro-thermal-electro-mechanical loads are considered. The first-order shear deformation theory is used to establish basic equations of the microplate considering the von Kármán’s nonlinearity. The size-dependent effect is characterized by the modified couple stress theory. A unified boundary condition model is introduced to discuss various in-plane boundary conditions (BCs). Analytical solutions for critical mechanical/hygrothermal buckling loads and post-buckling paths of the microplate under different in-plane BCs are obtained by using the perturbation method and the Galerkin method, respectively. Results reveal that size-dependent effect and elastic foundation enhance the stiffness of the microplate. Transverse displacement of the microplate in the post-buckling stage increases with the external compressive load, temperature and moisture concentration, expressing a nonlinear curve. When the displacement constraint in the normal direction is applied on the microplate edge, the critical mechanical/hygrothermal buckling load decreases. These results can be utilized in the optimization design of the micro-electro-mechanical systems.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    B. Tandon, J.J. Blaker, S.H. Cartmell, Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018)

  2. 2.

    J.Y. Cao, A. Syta, G. Litak, S.X. Zhou, D.J. Inman, Y.Q. Chen, Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 130(6), 103 (2015)

  3. 3.

    H. Guo, Y.S. Wang, C. Yang, X.L. Wang, N.N. Liu, Z.J. Xu, Vehicle interior noise active control based on piezoelectric ceramic materials and improved fuzzy control algorithm. Appl. Acoust. 150, 216–226 (2019)

  4. 4.

    J.Y. Chen, Q.W. Qiu, Y.L. Han, D. Lau, Piezoelectric materials for sustainable building structures: fundamentals and applications. Renew. Sustain. Energy Rev. 101, 14–25 (2019)

  5. 5.

    F. Ejeian, S. Azadi, A. Razmjou, Y. Orooji, A. Kottapalli, M.E. Warkiani, M. Asadnia, Design and applications of MEMS flow sensors: a review. Sens. Actuators A Phys. 295, 483–502 (2019)

  6. 6.

    M. Kabir, H. Kazari, D. Ozevin, Piezoelectric MEMS acoustic emission sensors. Sens. Actuators A Phys. 279, 53–64 (2018)

  7. 7.

    M. Daeichin, M. Ozdogan, S. Towfighian, R. Miles, Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens. Actuators A Phys. 289, 34–43 (2019)

  8. 8.

    Y. Pei, W.D. Wang, G.J. Zhang, J.W. Ding, Q.D. Xu, X.Y. Zhang, S.H. Yang, N.X. Shen, Y.Q. Lian, L.S. Zhang, R.X. Wang, W.D. Zhang, Design and implementation of T-type MEMS heart sound sensor. Sens. Actuators A Phys. 285, 308–318 (2019)

  9. 9.

    M.R. Naik, U.N. Kempaiah, Kumarchannaveeresh, Directional optimization of MEMS piezoelectric hydrophone for underwater application. Mater. Today Proc. 5(1, Part 1), 823–829 (2018)

  10. 10.

    R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

  11. 11.

    A. Chong, F. Yang, D. Lam, P. Tong, Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)

  12. 12.

    F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

  13. 13.

    R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

  14. 14.

    C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

  15. 15.

    A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

  16. 16.

    M. Simsek, J.N. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

  17. 17.

    H.M. Ma, X.L. Gao, J.N. Reddy, A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)

  18. 18.

    M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010)

  19. 19.

    J.N. Reddy, J. Berry, Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress. Compos. Struct. 94(12), 3664–3668 (2012)

  20. 20.

    M.A. Abazid, M. Sobhy, Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory. Microsyst. Technol. 24(2), 1227–1245 (2018)

  21. 21.

    A.M .Zenkour, R.A. Alghanmi. Hygro-thermo-electro-mechanical bending analysis of sandwich plates with FG core and piezoelectric faces. Mechanics of Advanced Materials and Structures (2019), pp. 1–13

  22. 22.

    J. Lou, L.W. He, J.K. Du, H.P. Wu, Buckling and post-buckling analyses of piezoelectric hybrid microplates subject to thermocelectro-mechanical loads based on the modified couple stress theory. Compos. Struct. 153, 332–344 (2016)

  23. 23.

    M.M. Barooti, H. Safarpour, M. Ghadiri, Critical speed and free vibration analysis of spinning 3d single-walled carbon nanotubes resting on elastic foundations. Eur. Phys. J. Plus 132(1), 6 (2017)

  24. 24.

    H. Nourmohammadi, B. Behjat, Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM. Eng. Anal. Bound. Elem. 99, 131–141 (2019)

  25. 25.

    X.C. Chen, Y.H. Li, Size-dependent post-buckling behaviors of geometrically imperfect microbeams. Mech. Res. Commun. 88, 25–33 (2018)

  26. 26.

    K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Comparison of modeling a conical nanotube resting on the Winkler elastic foundation based on the modified couple stress theory and molecular dynamics simulation. Eur. Phys. J. Plus 132(3), 115 (2017)

  27. 27.

    Y.H. Dong, Y.F. Zhang, Y.H. Li, An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect. Compos. Struct. 170, 11–25 (2017)

  28. 28.

    H.T. Thai, D.H. Choi, Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

  29. 29.

    S.S. Mirjavadi, M. Forsat, M.R. Barati, G.M. Abdella, M.B. Afshari, A.M.S. Hamouda, S. Rabby, Dynamic response of metal foam fg porous cylindrical micro-shells due to moving loads with strain gradient size-dependency. Eur. Phys. J. Plus 134(5), 214 (2019)

  30. 30.

    Y.H. Dong, L.W. He, L. Wang, Y.H. Li, J. Yang, Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82–83, 466–478 (2018)

  31. 31.

    J. Lou, L.W. He, Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Compos. Struct. 131, 810–820 (2015)

  32. 32.

    H. Akhavan, S.H. Hashemi, H.R.D. Taher, A. Alibeigloo, S. Vahabi, Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: buckling analysis. Comput. Mater. Sci. 44(3), 968–978 (2009)

  33. 33.

    Sobhy, Mohammed, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013)

  34. 34.

    H.S. Shen, Thermal postbuckling analysis of imperfect Reissner–Mindlin plates on softening nonlinear elastic foundations. J. Eng. Math. 33(3), 259–270 (1998)

  35. 35.

    K.M. Liew, J. Yang, S. Kitipornchai, Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int. J. Solids Struct. 40(15), 3869–3892 (2003)

  36. 36.

    M.R. Nami, M. Janghorban, M. Damadam, Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory. Aerosp. Sci. Technol. 41, 7–15 (2015)

  37. 37.

    L.W. He, J. Lou, E.Y. Zhang, Y. Wang, Y. Bai, A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory. Compos. Struct. 130, 107–115 (2015)

  38. 38.

    A.M. Zenkour, Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder. Appl. Math. Model. 38(24), 6133–6143 (2014)

  39. 39.

    A.J. Beveridge, M.A. Wheel, D.H. Nash, The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50(1), 246–255 (2013)

  40. 40.

    N.D. Duc, P.H. Cong, V.D. Quang, Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci. 115–116, 711–722 (2016)

  41. 41.

    C.M.C. Roque, A.J.M. Ferreira, J.N. Reddy, Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37(7), 4626–4633 (2013)

Download references


Yinghui Li was supported by National Natural Science Foundation of China (Grant no. 11872319).

Author information

Correspondence to Youheng Dong or Yinghui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.


Appendix A

The expressions of \(A_{ij}\), \(D_{ij}\), \(A_{n}\), \(D_{n}\), \(N_{\mathrm{T}}\), \(N_{\mathrm{C}}\), \(N_{\mathrm{P}}\), \(M_{T}\), \(M_{C}\) and \(M_{P}\) are given as

$$\begin{aligned}&A_{ij}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}Q_{eij}\mathrm{d}z +2\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}Q_{pij}\mathrm{d}z\quad \left( ij=11,12,66\right) \nonumber \\&A_{44}=k_{s}\left( \int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}Q_{e44}\mathrm{d}z +2\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}Q_{p44}\mathrm{d}z\right) \nonumber \\&D_{ij}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}Q_{eij}z^{2}\mathrm{d}z +2\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}Q_{pij}z^{2}\mathrm{d}z\quad \left( ij=11,12,66\right) \nonumber \\&[A_{n},D_{n}]=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}\frac{E_{e}l^{2}}{2\left( 1+\nu _{e}\right) } [1,z^{2}]\mathrm{d}z\nonumber \\&N_{\mathrm{T}}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}\left( Q_{e11}+Q_{e12}\right) \alpha _{e}T\mathrm{d}z +2\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}\left( Q_{p11}+Q_{p12}\right) \alpha _{p}T\mathrm{d}z\nonumber \\&M_{T}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}\left( Q_{e11}+Q_{e12}\right) \alpha _{e}Tz\mathrm{d}z +\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}\left( Q_{p11}+Q_{p12}\right) \alpha _{p}Tz\mathrm{d}z\nonumber \\&\quad +\,\int _{-\frac{h}{2}}^{-\frac{h_{e}}{2}}\left( Q_{p11}+Q_{p12}\right) \alpha _{p}Tz\mathrm{d}z\nonumber \\&N_{\mathrm{P}}=\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}{\overline{e}}_{31}E_{z}\mathrm{d}z +\int _{-\frac{h}{2}}^{-\frac{h_{e}}{2}}{\overline{e}}_{31}E_{z}\mathrm{d}z\nonumber \\&M_{P}=\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}{\overline{e}}_{31}E_{z}z\mathrm{d}z +\int _{-\frac{h}{2}}^{-\frac{h_{e}}{2}}{\overline{e}}_{31}E_{z}z\mathrm{d}z\nonumber \\&N_{\mathrm{C}}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}\left( Q_{e11}+Q_{e12}\right) \beta _{e}C\mathrm{d}z +2\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}\left( Q_{p11}+Q_{p12}\right) \beta _{p}C\mathrm{d}z\nonumber \\&M_{C}=\int _{-\frac{h_{e}}{2}}^{\frac{h_{e}}{2}}\left( Q_{e11}+Q_{e12}\right) \beta _{e}Cz\mathrm{d}z +\int _{\frac{h_{e}}{2}}^{\frac{h}{2}}\left( Q_{p11}+Q_{p12}\right) \beta _{p}Cz\mathrm{d}z\nonumber \\&\ \ \ \ \ \ \ \ +\int _{-\frac{h}{2}}^{-\frac{h_{e}}{2}}\left( Q_{p11}+Q_{p12}\right) \beta _{p}Cz\mathrm{d}z \end{aligned}$$

Appendix B

The present equilibrium equations are validated by the degeneration analyses as follows:

Ignoring size-dependent effect

The size-dependent effect is captured by the MCST. The additional stiffness \(A_{n}\) and \(D_{n}\) appear in equations. By setting \(l=0\), several coefficients in Eqs. (15), (16) and (59) become \(A_{n}=D_{n}=0\), \(X_{i}=R_{j}=0\), \((i=x,y,z,yz,xz,xy,\)\(j=yz,xz)\). The governing equations degenerate to the state for the classical first-order shear deformation theory expressed as

$$\begin{aligned} \begin{aligned}&N_{x,x}+N_{xy,y}=0\\&N_{xy,x}+N_{y,y}=0\\&Q_{xz,x}+Q_{yz,y}+{\tilde{N}}-k_{w}w+k_{p}\nabla ^{2}w=0\\&M_{x,x}+M_{xy,y}-Q_{xz}=0\\&M_{xy,x}+M_{y,y}-Q_{yz}=0\\ \end{aligned} \end{aligned}$$

Equation (60) is the same as the equilibrium equations expressed by Eq. (15) in paper [40] without considering the transverse load and kinetic energy.

Ignoring Pasternak foundation

The effect of Pasternak foundation on the microplate is studied by introducing two parameters \(k_{w}, k_{p}\). Setting \(k_{w}=k_{p}=0\) yields

$$\begin{aligned} \begin{aligned}&N_{x,x}+N_{xy,y}+\frac{1}{2}(X_{xz,xy}+X_{yz,yy})=0\\&N_{xy,x}+N_{y,y}-\frac{1}{2}(X_{xz,xx}+X_{yz,xy})=0\\&Q_{xz,x}+Q_{yz,y}+\frac{1}{2}(X_{xy,xx}+X_{y,xy}-X_{xy,yy}-X_{x,xy})+{\tilde{N}}=0\\&M_{x,x}+M_{xy,y}-Q_{xz}+\frac{1}{2}(X_{xy,x}+X_{y,y}-X_{z,y}+R_{xz,xy}+R_{yz,yy})=0\\&M_{xy,x}+M_{y,y}-Q_{yz}-\frac{1}{2}(X_{x,x}+X_{xy,y}-X_{z,x}+R_{xz,xx}+R_{yz,xy})=0\\ \end{aligned} \end{aligned}$$

Equation (61) is identical to the Eq. (27) proposed in paper [28] when the body force and transverse loads vanish.

Ignoring geometric nonlinearity

Without the aid of the von Kármán’s nonlinear strains, the strain field of the microplate becomes

$$\begin{aligned} \begin{aligned}&\varepsilon _{xx}=u_{,x}+z\varphi _{x,x},\quad \varepsilon _{yy}=v_{,y}+z\varphi _{y,y},\quad \varepsilon _{zz}=0\\&\gamma _{yz}=\varphi _y+w_{,y},\quad \gamma _{xz}=\varphi _x+w_{,x},\quad \gamma _{xy}=u_{,y}+v_{,x}+z(\varphi _{x,y}+\varphi _{y,x})\\ \end{aligned} \end{aligned}$$

The equilibrium Eqs. (6)–(10) are rewritten as

$$\begin{aligned} \begin{aligned}&N_{x,x}+N_{xy,y}+\frac{1}{2}\left( X_{xz,xy}+X_{yz,yy}\right) =0\\&N_{xy,x}+N_{y,y}-\frac{1}{2}\left( X_{xz,xx}+X_{yz,xy}\right) =0\\&Q_{xz,x}+Q_{yz,y}+\frac{1}{2}\left( X_{xy,xx}+X_{y,xy}-X_{xy,yy}-X_{x,xy}\right) -k_{w}w+k_{p}\nabla ^{2}w=0\\&M_{x,x}+M_{xy,y}-Q_{xz}+\frac{1}{2}\left( X_{xy,x}+X_{y,y}-X_{z,y}+R_{xz,xy}+R_{yz,yy}\right) =0\\&M_{xy,x}+M_{y,y}-Q_{yz}-\frac{1}{2}\left( X_{x,x}+X_{xy,y}-X_{z,x}+R_{xz,xx}+R_{yz,xy}\right) =0\\ \end{aligned} \end{aligned}$$

Equation (62) is the same as the equilibrium Eq. (6) provided in paper [41] when the transverse loads are ignored.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Dong, Y. & Li, Y. Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field. Eur. Phys. J. Plus 135, 61 (2020) doi:10.1140/epjp/s13360-020-00098-0

Download citation