Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Radiative recombination rate suppressed in a quantum photocell with three electron donors

  • 36 Accesses

Abstract

The radiative recombination of electron–hole pairs represents a great challenge to the photon-to-charge efficiency in photocell. In this paper, we visit the radiative recombination rate (RRR) in a quantum photocell with or without three dipole–dipole coupled electron donors. The results show that different gaps play the same roles while the ambient temperatures play different roles in the suppressed RRR with or without three dipole–dipole coupled electron donors. What’s more, the dipole–dipole coupling strength \(J\) can greatly inhibit the RRRs with three dipole–dipole coupled electron donors, which indicates the quantum coherence generated by three coupled donors is an efficient approach to suppress RRR, and it is different from the quantum coherence mentioned by Marlan O. Scully [PRL 104, 207701 (2010)]. This presented scheme may propose some regulating strategies for efficient conversion efficiency via the suppressed RRR.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    P. Würfel, Physics of Solar Cells (Wiley, Berlin, 2009)

  2. 2.

    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

  3. 3.

    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905 (2016)

  4. 4.

    U. Würfel, M. Thorwart, E.R. Weber, Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells, in Semiconductors and Semimetals, vol. 85 (Academic Press, New York, 2011)

  5. 5.

    O.D. Miller, E. Yablonovitch, S.R. Kurtz, IEEE J. Photovolt. 2, 303 (2012)

  6. 6.

    F.H. Alharbi, J. Phys. D Appl. Phys. 46, 125102 (2013)

  7. 7.

    F.H. Alharbi, S. Kais, Renew. Sustain. Energy Rev. 43, 1073 (2015)

  8. 8.

    M. Daryani, A. Rostami, G. Darvish, M.K. Morravej Farshi, Opt. Quantum Electron. 49, 255 (2017)

  9. 9.

    C.H. Henry, J. Appl. Phys. 51, 4494 (1980)

  10. 10.

    A. Luque, P.G. Linares, E. Antolin, E. Canovas, C.D. Farmer, C.R. Stanley, A. Marti, Appl. Phys. Lett. 96, 013501 (2010)

  11. 11.

    T. Nozawa, Y. Arakawa, Appl. Phys. Lett. 98, 171108 (2011)

  12. 12.

    A. Luque, A. Marti, Phys. Rev. Lett. 78, 5014 (1997)

  13. 13.

    J. Li, M. Chong, J. Zhu, Y. Li, J. Xu, P. Wang, Z. Shang, Z. Yang, R. Zhu, X. Cao, Appl. Phys. Lett. 60, 2240 (1992)

  14. 14.

    J. Bruns, W. Seifert, P. Wawer, H. Winnicke, D. Braunig, H.G. Wagemann, Appl. Phys. Lett. 64, 2700 (1994)

  15. 15.

    H. Kasai, H. Matsumura, Sol. Energy Mater. Sol. Cells 48, 93 (1997)

  16. 16.

    A. Luque, J. Appl. Phys. 11, 031301 (2011)

  17. 17.

    K.E. Dorfman, M.B. Kim, A.A. Svidzinsky, Phys. Rev. A 84, 053829 (2011)

  18. 18.

    M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010)

  19. 19.

    A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Phys. Rev. A 84, 053818 (2011)

  20. 20.

    M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011)

  21. 21.

    K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Proc. Natl. Acad. Sci. 110, 2746 (2013)

  22. 22.

    C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Phys. Rev. Lett. 111, 253601 (2013)

  23. 23.

    K.E. Dorfman, K.E. Dorfman, M.O. Scully, Coherent Opt. Phenom. 1, 42 (2013)

  24. 24.

    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer et al., Appl. Phys. Lett. 90, 183516 (2007)

  25. 25.

    R.R. King, D.C. Law, K.M. Edmondson et al., Adv. Opt. Electron. 2007, 29523 (2007)

Download references

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (Grant Nos. 61205205 and 61565008) and the General Program of Yunnan Applied Basic Research Project, China (Grant No. 2016FB009).

Author information

SCZ conceived the idea. JY Chen performed the numerical computations and wrote the draft, and SCZ did the analysis and revised the paper.

Correspondence to Shun-Cai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, S. Radiative recombination rate suppressed in a quantum photocell with three electron donors. Eur. Phys. J. Plus 135, 92 (2020). https://doi.org/10.1140/epjp/s13360-019-00096-x

Download citation