Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparison of full-wave models of terahertz photoconductive antenna based on ordinary differential equation and Monte Carlo method

Abstract

The investigation and comparison of two full-wave models of photoconductive terahertz antenna, made from low-temperature grown gallium arsenide, is performed. One model solves simple approximation of drift-diffusion equations another uses Monte Carlo simulation for estimation of the electrical current in the active region of antenna. Simulation results revealed that the simple model can be useful in the cases when the duration of photoexcitation is relatively long (FWHM \(\ge \) 250 fs). In a case of shorter laser pulses (FWHM \(\ge \) 130 fs), electron recombination (or trapping) time should be in the order of 0.1 ps, which is characteristic of highly compensated semiconductors. In other cases, transient dynamics of electron drift velocity at sub-picosecond timescales makes significant impact to the growth speed of the photocurrent. This leads to the overestimation of electric field amplitude in the high-frequency range when the simple model is used. Full-wave simulation shows good agreement with experimental results when the detectors’ response is included in the calculation. The calculated results were confirmed experimentally which increases the reliability of the full-wave model presented in the paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    X.C. Zhang, J. Xu, Introduction to THz Wave Photonics (Springer, US, 2010)

  2. 2.

    M. Tonouchi, Nat. Photonics 1, 97 (2007)

  3. 3.

    M. O. E. S. Nathan M. Burford, Opt. Eng. 56(1), 1 (2017)

  4. 4.

    G. Chattopadhyay, I.E.E.E. Trans, THz. Sci. Technol. 1(1), 33 (2011)

  5. 5.

    J.V. Siles, K.B. Cooper, C. Lee, R.H. Lin, G. Chattopadhyay, I. Mehdi, I.E.E.E. Trans, THz. Sci. Technol. 8(6), 596 (2018)

  6. 6.

    D.H. Auston, M.C. Nuss, IEEE J. Quantum Electron. 24(2), 184 (1988)

  7. 7.

    F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, M. Tani, Appl. Phys. Lett. 96(21), 211104 (2010)

  8. 8.

    R.O. Grondin, S.M. El-Ghazaly, S. Goodnick, I.E.E.E. Trans, Microw. Theory Techn. 47(6), 817 (1999)

  9. 9.

    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, New York, NY, 1984)

  10. 10.

    T. Grasser, Ting-Wei Tang, H. Kosina, S. Selberherr, Proc. IEEE 91(2), 251 (2003)

  11. 11.

    R. Emadi, R. Safian, A.Z. Nezhad, I.E.E.E.J. Sel, Topics. Quantum Electron. 23(4), 1 (2017)

  12. 12.

    S.E. Laux, M.V. Fischetti, Proceedings of Bipolar/Bicmos Circuits and Technology Meeting 27–34 (1995)

  13. 13.

    Sang-Gyu Park, A.M. Weiner, M.R. Melloch, C.W. Sider, J.L. Sider, A.J. Taylor, IEEE J. Quantum Electron. 35(8), 1257 (1999)

  14. 14.

    S. Hughes, M. Tani, K. Sakai, J. Appl. Phys. 93(8), 4880 (2003)

  15. 15.

    M.R. Stone, M. Naftaly, R.E. Miles, J.R. Fletcher, D.P. Steenson, I.E.E.E. Trans, Microw. Theory Techn. 52(10), 2420 (2004)

  16. 16.

    D. Saeedkia, A.H. Majedi, S. Safavi-Naeini, R.R. Mansour, IEEE J. Quantum Electron. 41(2), 234 (2005)

  17. 17.

    M. Sirbu, S.B.P. Lepaul, F. Aniel, I.E.E.E. Trans, Microw. Theory Techn. 53(9), 2991 (2005)

  18. 18.

    D. Saeedkia, S. Safavi-Naeini, I.E.E.E. Photon, Technol. Lett. 18(13), 1457 (2006)

  19. 19.

    M. Neshat, D. Saeedkia, L. Rezaee, S. Safavi-Naeini, I.E.E.E. Trans, Microw. Theory Techn. 58(7), 1952 (2010)

  20. 20.

    Z. Ma, H. Ma, C. Yang, K. Feng, J. Syst. Eng. Electron. 22(3), 373 (2011)

  21. 21.

    N. Khiabani, Y. Huang, Y. Shen, S. Boyes, I.E.E.E. Trans, Antennas Propag. 61(4), 1538 (2013)

  22. 22.

    E. Moreno, M.F. Pantoja, S.G. Garcia, A.R. Bretones, R.G. Martin, I.E.E.E. Trans, THz. Sci. Technol. 4(4), 490 (2014)

  23. 23.

    E. Moreno, Z. Hemmat, J.B. Roldán, M.F. Pantoja, A.R. Bretones, S.G. García, J. Opt. Soc. Am. B 32(10), 2034 (2015)

  24. 24.

    S.L. Teitel, J.W. Wilkins, IEEE Transactions on Electron Devices 30(2), 150 (1983)

  25. 25.

    R. Emadi, N. Barani, R. Safian, A.Z. Nezhad, J. Infrared, Millim., THz Waves 37(11), 1069 (2016)

  26. 26.

    S.M. El-Ghazaly, R.P. Joshi, R.O. Grondin, I.E.E.E. Trans, Microw. Theory Techn. 38(5), 629 (1990)

  27. 27.

    E. Castro-Camus, J. Lloyd-Hughes, M.B. Johnston, Phys. Rev. B 71, 195301 (2005)

  28. 28.

    C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

  29. 29.

    S. Ramaswamy, T. wei Tang, IEEE Trans. Electron Devices 41(1), 76 (1994)

  30. 30.

    T. Grasser, H. Kosina, S. Selberherr, Appl. Phys. Lett. 79(12), 1900 (2001)

  31. 31.

    A. Reklaitis, Phys. Rev. B 74, 165305 (2006)

  32. 32.

    A. Reklaitis, Phys. Rev. B 77, 153309 (2008)

  33. 33.

    A. Reklaitis, J. Appl. Phys. 108(5), 053102 (2010)

  34. 34.

    A. Reklaitis, J. Appl. Phys. 109(8), 083108 (2011)

  35. 35.

    A. Reklaitis, J. Phys. D: Appl. Phys. 46, 145107 (2013)

  36. 36.

    A. Reklaitis, J. Appl. Phys. 116(8), 083107 (2014)

  37. 37.

    J. Xu, B.A. Bernhardt, M. Shur, C. Chen, A. Peczalski, Appl. Phys. Lett. 49(6), 342 (1986)

  38. 38.

    S.S. Prabhu, S.E. Ralph, M.R. Melloch, E.S. Harmon, Appl. Phys. Lett. 70(18), 2419 (1997)

  39. 39.

    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, London, 2000)

  40. 40.

    A. Dargys, J. Kundrotas, Handbook on physical properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994)

  41. 41.

    H. Brooks, (Academic Press, 1955), pp. 85 – 182

  42. 42.

    Ž. Kancleris, M. Willander, Phys. Stat. Sol. (b) 180(1), 207 (1993)

  43. 43.

    A. Krotkus, K. Bertulis, M. Kaminska, K. Korona, A. Wolos, J. Siegert, S. Marcinkevicius, J. Coutaz, IEE Proceedings - Optoelectronics 149(3), 111 (2002)

  44. 44.

    T.K. Nguyen, W.T. Kim, B.J. Kang, H.S. Bark, K. Kim, J. Lee, I. Park, T.-In Jeon, F. Rotermund, Opt. Comm. 383, 50 (2017)

Download references

Acknowledgements

This project has received funding from the European Social Fund (project No. 09.3.3-LMT-K-712-02-0037) under grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Correspondence to G. Šlekas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šlekas, G., Kancleris, Ž., Urbanowicz, A. et al. Comparison of full-wave models of terahertz photoconductive antenna based on ordinary differential equation and Monte Carlo method. Eur. Phys. J. Plus 135, 85 (2020). https://doi.org/10.1140/epjp/s13360-019-00094-z

Download citation