Advertisement

The exponent of the longitudinal structure function \(F_{\text {L}}\) at low x

  • G. R. BorounEmail author
Regular Article

Abstract

We present a set of formula to extract exponents of the longitudinal structure function and reduced cross section from the Regge-like behavior at small x. The exponents are found to be independent of \(Q^{2}\) at NNLO analysis. As a result, we show that the reduced cross-sectional exponents do not have the same behavior at some values of x. This difference predicts the non-linear effects and some evidence for shadowing and antishadowing at LHeC. Also the ratio \(\frac{F_{2}}{\sigma }\) is calculated and compared with the corresponding HERA data. Our calculations show a very good agreement with the DIS experimental data throughout the small values of x.

Notes

Acknowledgements

Author is grateful to the Razi University for financial support of this project.

References

  1. 1.
    A. Donnachie, P.V. Landshoff, Phys. Lett. B 437, 408 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    J.R. Cudell, A. Donnachie, P.V. Landshoff, Phys. Lett. B 448, 281 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    K. Golec-Biernat, A.M. Stasto, Phys. Rev. D 80, 014006 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    B. Rezaei, G.R. Boroun, Eur. Phys. J. A 55, 66 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    A. Donnachie, P.V. Landshoff, Phys. Lett. B 550, 160 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    P.V.Landshoff. arxiv:hep-ph/0203084
  7. 7.
    D.Britzger et al. (2019). arXiv:1901.08524
  8. 8.
    M. Hentschinski et al., Phys. Rev. Lett. 110, 041601 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    B. Rezaei, G.R. Boroun, Int. J. Theor. Phys. 57, 2309 (2018)CrossRefGoogle Scholar
  10. 10.
    G.R. Boroun, Phys. Rev. C 97, 015206 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    G.R. Boroun, Eur. Phys. J. Plus 129, 19 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    G.R. Boroun, B. Rezaei, J.K. Sarma, Int. J. Mod. Phys. A 29, 1450189 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    N. Baruah et al., Int. J. Theor. Phys. 54, 3596 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    S.Alekhin et al. arXiv:1808.08404
  17. 17.
    E. Laenen et al., Nucl. Phys. B 392, 162 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    S. Riemersma et al., Phys. Lett. B 347, 143 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Kisselev, Phys. Rev. D 60, 074001 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    G.R. Boroun, B. Rezaei, Nucl. Phys. B 857, 143 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    G.R. Boroun, B. Rezaei, EPL 100, 41001 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    G.R. Boroun, Nucl. Phys. B 884, 684 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N.Ya. Ivanov, Nucl. Phys. B 814, 142 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Thorne. (1998). arXiv:hep-ph/9805298
  25. 25.
    L.A. Harland-Lang et al., Eur. Phys. J. C 76, 10 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A.D. Martin et al., Eur. Phys. J. C 4, 463 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    YuL Dokshitzer, Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  28. 28.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  29. 29.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  30. 30.
    N. Ghahramany, G.R. Boroun, Phys. Lett. B 528, 239 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    G.R. Boroun, Lith. J. Phys. 48, 121 (2008)CrossRefGoogle Scholar
  32. 32.
    H1 Collab. (C.Adloff et al.), Eur. Phys. J. C21, 33 (2001)Google Scholar
  33. 33.
    ZEUS Collab. (S.Chekanov et al.), Phys. Lett. B 682, 8 (2009)Google Scholar
  34. 34.
    H1 and ZEUS Collab. (H.Abromowicz et al.), Eur. Phys. J. C 75, 580 (2015)Google Scholar
  35. 35.
    G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    R. Fiore et al., JETP Lett. 90, 319 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J. Sheibani et al., Phys. Rev. C 98, 045211 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    G.R. Boroun, B. Rezaei, Nucl. Phys. A 990, 244 (2019)ADSCrossRefGoogle Scholar
  39. 39.
    L.P. Kaptari et al., JETP Lett. 109, 281 (2019)ADSCrossRefGoogle Scholar
  40. 40.
    H1 Collab. (F.D.Aaron et al.), Eur. Phys. J. C 65, 89 (2010)Google Scholar
  41. 41.
    M. Gluk, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    M. Gluk, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Nucl. Phys. B 392, 162 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    A.Y. Illarionov, B.A. Kniehl, A.V. Kotikov, Phys. Lett. B 663, 66 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S. Catani, M. Ciafaloni and F. Hautmann, Preprint CERN-Th.6398/92, in Proceeding of the Workshop on Physics at HERA (Hamburg, 1991), Vol. 2., p. 690Google Scholar
  46. 46.
    S. Catani, F. Hautmann, Nucl. Phys. B 427, 475 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    S. Riemersma, J. Smith, W.L. van Neerven, Phys. Lett. B 347, 143 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    P. Desgrolard et al., JHEP 02, 029 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    A.A. Godizov, Nucl. Phys. A 927, 36 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    A. Watanabe, K. Suzuki, Phys. Rev. D 86, 035011 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    H1 Collab. (V.Andreev et al.), Eur. Phys. J. C 74, 2814 (2014)Google Scholar
  52. 52.
    E. M. Lobodzinska. (2003). arXiv:hep-ph/0311180
  53. 53.
    V. Tvaskis et al., Phys. Rev. C 97, 045204 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    H1 Collab. (F.D.Aaron et al.), Eur. Phys. J. C 71, 1579 (2011)Google Scholar
  55. 55.
    P. Monaghan et al., Phys. Rev. Lett. 110, 152002 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    C. Ewerz et al., Phys. Lett. B 720, 181 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    M. Kuroda, D. Schildknecht, Phys. Rev. D 85, 094001 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    C. Ewerz et al., JHEP 1103, 062 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    M. Niedziela, M. Praszalowicz, Acta Phys. Polon. B 46, 2019 (2015)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    W. Zhu et al., Nucl. Phys. B 551, 245 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    W. Zhu et al., Nucl. Phys. B 559, 375 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    J. Ruan et al., Nucl. Phys. B 760, 128 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    You Yu et al., J. Phys. G 45, 125003 (2018)ADSCrossRefGoogle Scholar
  64. 64.
    Hao Sun Pos DIS2017(2018)104Google Scholar
  65. 65.
    Pos DIS2018(2018)186Google Scholar
  66. 66.
    Lin Han et al., Phys. Lett. B 771, 106 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    Yao-Bei Liu, Nucl. Phys. B 923, 312 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    Yan-Ju Zhang et al., Phys. Lett. B 768, 241 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    M. Mangano (CERN) et al., CERN-ACC-2018-0056Google Scholar
  70. 70.
    M. Klein, Ann. Phys. 528, 138 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Physics DepartmentRazi UniversityKermanshahIran

Personalised recommendations