Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Tailoring of crystal phase, morphology, and optical properties of ZnO nanostructures by starch-assisted co-precipitation synthesis and annealing

  • 11 Accesses

Abstract

ZnO nanostructures have been synthesized by simple co-precipitation method in the presence or absence of surfactant (starch) and subsequent annealing at 500 and 800 °C for 5 h. The XRD results show ZnO and Zn5(OH)8Cl2·H2O phases in the absence, but only ZnO phase in the presence, of starch. The secondary phase diminishes upon annealing and only pure ZnO phase with improved crystallinity is realized at 800 °C. FTIR endorses different phases along with the starch surfactant by the representative modes. Diverse morphologies: hexagonal; tubular; spherical; and cluster morphologies are observed for different synthesis and annealing conditions. The direct band gap is found to be ~ 3.2 eV and experienced a red shift on annealing. The PL spectra consists of characteristic near band edge (NBE) emission in UV region and a broad emission in visible region corresponding to direct excitonic transitions and oxygen defect transitions, respectively. Samples having rod-like morphology as predominant exhibit strong UV and weak defect emissions, while those with spherical morphology as dominant display weak UV and broad defect emissions in PL. The quenching of NBE emission takes place on annealing, which is indicative of increase in non-radiative transitions or deformation of crystallinity or change in morphology. The PL emissions are strongly influenced by surfactant and annealing temperature. Such results offer new prospects for tuning and optimizing the properties of ZnO semiconductor for applications where the optical properties are decisive.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.K. Radzimska, T. Jesionowski, Materials 7(4), 2833 (2014)

  2. 2.

    J. Ma, W. Zhu, Y. Tian, Z. Wang, Nanoscale Res. Lett. 11, 200 (2016)

  3. 3.

    F.U. Hamelmann, J. Phys. Conf. Ser. 764, 012001 (2016)

  4. 4.

    K. Vidhya, M. Saravanan, G. Bhoopathi, Appl Nanosci. 5, 235 (2015)

  5. 5.

    S.S. Sanjay, A.C. Pandey, P. Ankit, M.C. Chattopadhyaya, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 83(3), 279 (2013)

  6. 6.

    G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Nanoscale Res. Lett. 12, 253 (2017)

  7. 7.

    E. Ozel, I.G. Tuncolu, C. Açiksar, E. Suvac, Hittite J. Sci. Eng. 3(2), 73 (2016)

  8. 8.

    M. Mrad, B. Chouchene, T.B. Chaabane, S. Afr. J. Chem. 71, 103 (2018)

  9. 9.

    S.K. Pandey, S.K. Pandey, V. Awasthi, A. Kumar, U.P. Deshpande, M. Gupta, S. Mukherjee, Bull. Mater. Sci. 37, 983 (2014)

  10. 10.

    A.K. Zak, W.H. Abd Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Adv. Powder Technol 24, 618 (2013)

  11. 11.

    J. Asghar, P. Muzammil, N. Sathish, IJCRST 3, 19 (2017)

  12. 12.

    N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Appl. Surf. Sci. 390, 17 (2016)

  13. 13.

    R.M. Thankachan, N. Joy, J. Abraham, N. Kalarikkal, S. Thomas, O.S. Oluwafemi, Mater. Res. Bull. 8, 131 (2017)

  14. 14.

    H. Kumar, R. Rani, ILCPA 14, 26 (2013)

  15. 15.

    D. Sun, Y. Du, Z. Li, Z. Chen, C. Zhu, S. Liu, J. Sol-Gel. Sci. Technol. 78, 347 (2016)

  16. 16.

    D.R. Lu, C.M. Xiao, S.J. Xu, Express Polym. Lett. 3, 366 (2009)

  17. 17.

    P. Vasileva, Mater. Sci. Nonequilib. Phase Transform 2, 26 (2016)

  18. 18.

    P. Raveendran, J. Fu, S.L. Wallen, J. Am. Chem. Soc. 125(46), 13940 (2003)

  19. 19.

    A. Singh, H.L. Vishwakarma, Mater. Sci. Pol. 33(4), 751 (2015)

  20. 20.

    A. Sholehah, A.H. Yuwono, Adv. Mater. Res. 1112, 57 (2015)

  21. 21.

    A. Moezzi, M. Cortie, A. McDonagh, Dalton Trans. 45, 7385 (2016)

  22. 22.

    I. Rasines, J.I.M. de Setien, Thermochim. Acta 37, 239 (1980)

  23. 23.

    O.K. Srivastava, E.A. Secco, Can. J. Chem. 45, 579 (1967)

  24. 24.

    M.Z.N. Nadiha, A. Fazilah, R. Bhat, A.A. Karim, Food Chem. 121, 1053 (2010)

  25. 25.

    W. Ciesielskia, C.Y. Lii, M.T. Yenb, P. Tomasik, Carbohydr. Polym. 51, 47 (2003)

  26. 26.

    M. Lina, X. Shanga, P. Liua, F. Xieb, X. Chena, Y.S.J. Wana, Carbohydr. Polym. 136, 266 (2016)

  27. 27.

    S.A. Roberts, R.E. Cameron, Carbohydr. Polym. 50, 133 (2002)

  28. 28.

    S.R. Senthilkumar, T. Sivakumar, Int. J. Pharm. Pharm. Sci. 6, 461 (2014)

  29. 29.

    J. Kazimierczak, D. Ciechanska, D. Wawro, K. Guzinska, Fibres Text. East. Eur. 15(61), 100 (2007)

  30. 30.

    H. Noei, C. Woll, M. Muhler, Y.M. Wang, J. Phys. Chem. C 115, 908 (2011)

  31. 31.

    K.S. Babu, A.R. Reddy, Ch. Sujatha, K.V. Reddy, A.N. Mallika, J. Adv. Ceram. 2(3), 260 (2013)

  32. 32.

    M. Andres-Verges, A. Mifsud, C.J. Serna, J. Chem. Soc. Faraday Trans. 86, 959 (1990)

  33. 33.

    Z. Sobri, Z.M.A. Ainun, E.S. Zainudin, IOP Conf. Ser. Mater. Sci. Eng. 368, 012046 (2018)

  34. 34.

    N. Vigneshwaran, S. Kumar, A.A. Kathe, P.V. Varadarajan, V. Prasad, Nanotechnology 17, 5087 (2006)

  35. 35.

    V. Prasad, A.J. Shaikh, A.A. Kathe, D.K. Bisoyi, A.K. Verma, N. Vigneshwaran, J. Mater. Process. Technol. 210(14), 1962 (2010)

  36. 36.

    X. Liu, Y. Wang, L. Yu, Z. Tong, L. Chen, H. Liu, H. Li, Starch-starke 65, 48 (2013)

  37. 37.

    Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, M. Willander, Materials 6(8), 3584 (2013)

  38. 38.

    A.V. Ravindra, B.C. Behera, P. Padhan, J. Nanosci. Nanotechnol. 14(7), 5591 (2014)

  39. 39.

    L. Guz, L. Fama, R. Candal, S. Goyanes, Carbohydr. Polym. 157, 1611 (2017)

  40. 40.

    N. Mufti, S. Maryam, A.A. Fibriyanti, R. Kurniawan, A. Fuad, A. Taufiq, Scanning. 2018, 6545803 (2018)

  41. 41.

    W.-C. Sun, Y.-C. Yeh, C.-T. Ko, J.-H. He, M.-J. Chen, Nanoscale Res. Lett. 6, 556 (2011)

  42. 42.

    D.E. Skinner, D.P. Colombo Jr., J.J. Cavaleri, R.M. Bowman, J. Phys. Chem. 99(20), 7853 (1995)

  43. 43.

    A. Sengupta, B. Jiang, K. Mandal, J. Zhang, J. Phys. Chem. B. 103(16), 3128 (1999)

  44. 44.

    D. Verma, A.K. Kole, P. Kumbhakar, J. Alloys Compd. 625, 122 (2015)

  45. 45.

    A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, L.S. Dang, J. Appl. Phys. 106, 104307 (2009)

  46. 46.

    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

  47. 47.

    R. Vinod, M.J. Bushiri, S.R. Achary, V. Munoz-Sanjose, MSEB 191, 1 (2015)

  48. 48.

    J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, B. Feng, J. Alloys Compd. 477, 632 (2009)

  49. 49.

    V. Koutu, L. Shastri, M.M. Malik, Mater. Sci. Pol. 34(4), 819 (2016)

  50. 50.

    V. Noack, A. Eychmuller, Chem. Mater. 14(3), 1411 (2002)

Download references

Acknowledgements

A. V. Ravindra acknowledges the financial support provided by Yunnan Province Post-Doctoral Training Fund-2018 and Kunming University of Science and Technology for the Post-Doctoral Fellowship. MC would like to acknowledge the Department of Science and Technology for providing funding through DST-FIST Level-1 scheme to Department of Physics, KLEF; File No: SR/FST/PS-1/2018/35. CR thanks the financial support provided by the Department of Science and Technology (DST-SERB) under the scheme of Young Scientist (File No: SB/FTP/ETA-0213/2014).

Author information

Correspondence to A. V. Ravindra.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandrika, M., Ravindra, A.V., Rajesh, C. et al. Tailoring of crystal phase, morphology, and optical properties of ZnO nanostructures by starch-assisted co-precipitation synthesis and annealing. Eur. Phys. J. Plus 135, 112 (2020). https://doi.org/10.1140/epjp/s13360-019-00073-4

Download citation