Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of orientation of the centrally placed heated baffle in an alternative configured ventilation cavity

  • 24 Accesses

  • 1 Citations

Abstract

The current study is carried out to investigate the natural convection of enclosures contains a horizontal/vertical heated baffle at its center with inlet and outlet ports on vertical walls. The vertical walls of the cavity are cold and the horizontal walls are insulated. The working medium of fluid is air with the Prandtl number 0.71. The governing equations of the problem are converted into the vorticity−stream function formulation. The finite-difference method is adopted to solve these equations. The calculations were performed for various Rayleigh numbers \((10^3 - 10^6)\) and Reynolds numbers (10, 100, 500), and the effects of the different aspect ratios (\(A=0.25, 0.5, 1.0, 2.0\)) are tested with the most efficient configured cavity with the baffle. The numerical results are illustrated graphically in the form of streamlines, isotherms, and local and averaged Nusselt numbers. The results show that the BB configuration cavity with both orientations of the heated baffle performs better in optimizing the heat inside the cavity. The ventilated cavity with vertical baffle transfers heat more rapidly than the horizontal baffle.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    G.K. Batchelor, Q. Appl. Math. 12, 209–233 (1954)

  2. 2.

    S. Ostrach, J. Heat Transf. 110, 1175–1190 (1988)

  3. 3.

    H. Turkoglu, N. Yucel, Numer. Heat Transf. Part A. 27, 351–358 (1995)

  4. 4.

    S. Roy, T. Basak, Int. J. Eng. Sci. 43, 668–680 (2005)

  5. 5.

    S. Sureshkumar, M. Muthtamilselvan, Eur. Phys. J. Plus. 131, 95 (2016)

  6. 6.

    M.A. Sheremet, I. Pop, O. Mahian, Int. J. Heat Mass Transf. 116, 751–761 (2018)

  7. 7.

    M.W. Nansteel, R. Greif, J. Heat Transf. 103, 623–629 (1981)

  8. 8.

    J.M. House, C. Beckermann, T.F. Smith, Numer. Heat Transf. Part A. 18, 213–225 (1990)

  9. 9.

    X. Shi, J.M. Khodadadi, J. Heat Transf. 125, 624–634 (2003)

  10. 10.

    K. Periyadurai, M. Muthtamilselvan, D.H. Doh, J. Magn. Magn. Mater. 420, 343–355 (2016)

  11. 11.

    M. Muthtamilselvan, K. Periyadurai, D.H. Doh, Int. J. Heat Mass Transf. 115, 19–34 (2017)

  12. 12.

    A. Raisi, I. Arvin, Int. J. Thermal Sci. 128, 1–14 (2018)

  13. 13.

    B.W. Martin, H. Cohen, Br. J. Appl. Phys. 5, 91–95 (1954)

  14. 14.

    A.D. Gosman, F.C. Lockwood, D.G. Tatchell, Int. J. Heat Mass Transf. 14, 1717–1730 (1971)

  15. 15.

    Y.L. Chan, C.L. Tien, Numer. Heat Transf. 8, 65–80 (1985)

  16. 16.

    S. Singh, M.A.R. Sharif, Numer. Heat Transf. Part A. 44, 233–253 (2003)

  17. 17.

    S.M. Saeidi, J.M. Khodadadi, Int. J. Heat Mass Transf. 49, 1896–1906 (2006)

  18. 18.

    A.H. Mahmoudi, M. Shahi, F. Talebi, Int. Commun. Heat Mass Transf. 37, 1158–1173 (2010)

  19. 19.

    K. Ezzaraa, A. Bahlaoui, I. Arroub, A. Raji, M. Hasnaoui, M. Naimi, Int. J. Mech. Sci. (Article in Press). https://doi.org/10.1016/j.ijmecsci.2019.01.032

  20. 20.

    S.Z. Shuja, B.S. Yilbas, M.O. Iqbal, Int. J. Numer. Methods Heat Fluid Flow. 10, 824–841 (2000)

  21. 21.

    T.V. Radhakrishnan, A.K. Verma, C. Balaji, S.P. Venkateshan, Exp. Thermal Fluid Sci. 32, 502–520 (2007)

  22. 22.

    A. Bahlaoui, A. Raji, M. Hasnaoui, M. Naimi, T. Makayssi, M. Lamsaadi, Energy Convers. Manag. 50, 626–635 (2009)

  23. 23.

    M.M. Rahman, S. Parvin, N.A. Rahim, M.R. Islam, R. Saidur, M. Hasanuzzaman, Appl. Math. Model. 36, 2056–2066 (2012)

  24. 24.

    K. Kalidasan, R. Velkennedy, P.Rajesh Kanna, Int. Commun. Heat Mass Transf. 56, 121–132 (2014)

  25. 25.

    K. Kalidasan, R. Velkennedy, P.Rajesh Kanna, Arab. J. Sci. Eng. 39, 8265–8277 (2014)

  26. 26.

    F. Selimefendigil, H. Oztop, Thermal Sci. 18, 377–389 (2014)

  27. 27.

    K. Kalidasan, P.Rajesh Kanna, Int. Commun. Heat Mass Transf. 81, 64–71 (2017)

  28. 28.

    P.R. Kanna, M.K. Das, Int. J. Numer. Methods Fluids 50, 973–985 (2005)

  29. 29.

    J.O. Wilkes, S.W. Churchill, Am. Inst. Chem. Eng. 12, 161–166 (1966)

  30. 30.

    G. De vahl davis, Int. J. Numer. Methods Fluids. 3, 249–264 (1983)

  31. 31.

    F. Corvaro, M. Paroncini, Exp. Thermal Fluid Sci. 31, 721–739 (2007)

Download references

Acknowledgements

Authors would like to acknowledge and express their gratitude to the United Arab Emirates University, Al Ain, UAE for providing the financial support with grant No. 31S363-UPAR(4) 2018. Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea Government (No. 2017R1A2B2010603). This has been also supported by the Program of Business Cooperative \( R \& D\) (R0006261) funded by MOTIE.

Author information

Correspondence to M. Muthtamilselvan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gokulavani, P., Muthtamilselvan, M., Al-Mdallal, Q.M. et al. Effects of orientation of the centrally placed heated baffle in an alternative configured ventilation cavity. Eur. Phys. J. Plus 135, 23 (2020). https://doi.org/10.1140/epjp/s13360-019-00070-7

Download citation