Advertisement

Investigation of fractality and variation of fractal dimension in germinating seed

  • 14 Accesses

Abstract

The fractal analysis has now been recognized as a potential mathematical tool in analyzing complex structures. The present work reports not only the fractal nature of Vigna radiata seed analyzed with the help of Field Emission Scanning Electron Microscopic images but also the variation of fractal dimension (FD) in a germinating seed. The variation of FD during germination in different media—water, salt, and diesel soot with carbon nanoparticles (CNPs)—is studied using the box-counting technique. The study is the first report of the fractality of seed. Irrespective of the media, the FD attains a maximum value on the day of germination and decreases after that. The time (T) for achieving maximum FD varies with the nature of stress. In the study, when the CNPs of diesel soot lower the T value, the salt raises the T value with respect to the control set. The Fourier Transform Infrared analysis of the seeds germinating in different media shows an increased rate of protein formation during the initial stage of germination and a steady state after that. In conjunction with the literature, the variation in the amino nitrogen, soluble nucleotide—RNA, and protein content of the seed during the initial days of germination gets reflected in its FD.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M.S. Swapna, H.V.S. Devi, V. Raj, S. Sankararaman, Eur. Phys. J. Plus 133, 106 (2018)

  2. 2.

    K. Falconer, Fractals: a very short introduction (Oxford University Press, United Kingdom, 2013)

  3. 3.

    V. Raj, M.S. Swapna, S. Soumya, S. Sankararaman, Indian J. Phys. 5, 115504 (2019)

  4. 4.

    E.M. Miedziejko, Acta Agrophys. 7, 141 (2006)

  5. 5.

    B.B. Mandelbrot, The fractal geometry of nature (WH freeman, New York, 1983)

  6. 6.

    B.B. Mandelbrot, Proc. Natl. Acad. Sci. 72, 3825 (1975)

  7. 7.

    B.J. West, A.L. Goldberger, Am. Sci. 75, 354 (1987)

  8. 8.

    H.M. Hastings, G. Sugihara, Fractals. A user's guide for the natural sciences (Oxford University Press, Oxford, 1993)

  9. 9.

    N.C. Kenkel, D.J. Walker, Coenoses 11, 77 (1996)

  10. 10.

    P.S. Addison, Fractals and chaos—an illustrated course (Institute of Physics Publishing, Bristol, 1997)

  11. 11.

    J. Gleick, Chaos, making a new science (Penguin Books, New York, 1987)

  12. 12.

    G. Captur, A.L. Karperien, A.D. Hughes, D.P. Francis, J.C. Moon, Nat. Rev. Cardiol. 14, 56 (2017)

  13. 13.

    M.S. Swapna, S.S. Shinker, S. Suresh, S. Sankararaman, Biomed. Mater. Eng. 29, 787 (2018)

  14. 14.

    B. Klinkenberg, Math. Geol. 26, 23 (1994)

  15. 15.

    H.E. Schepers, J.H.G.M. van Beek, J.B. Bassingthwaighte, IEEE Eng. Med. Biol. Mag. 11, 57 (1992)

  16. 16.

    S. Soumya, M.S. Swapna, V. Raj, V.P.M. Pillai, S. Sankararaman, Eur. Phys. J. Plus 132, 551 (2017)

  17. 17.

    W. Deering, B.J. West, I.E.E.E. Eng, Med. Biol. Mag. 11, 40 (1992)

  18. 18.

    N.C. Kenkel, D.J. Walker, Abstr. Bot. 17, 53 (1993)

  19. 19.

    G. Losa, Fract. Geom. Nonlinear Anal. Med. Biol. 1, 11 (2015)

  20. 20.

    G. Sugihara, R.M. May, Trends Ecol. Evol. 5, 79 (1990)

  21. 21.

    B. Hao, H.-C. Lee, S. Zhang, Chaos. Solitons & Fractals 11, 825 (2000)

  22. 22.

    H.E. Stanley, Phys. A Stat. Mech. Appl. 186, 1 (1992)

  23. 23.

    M. Takahashi, J. Theor. Biol. 141, 117 (1989)

  24. 24.

    T.G. Smith Jr., W.B. Marks, G.D. Lange, W.H. Sheriff Jr., E.A. Neale, J. Neurosci. Methods 27, 173 (1989)

  25. 25.

    M. Lewis, D.C. Rees, Science 230, 1163 (1985)

  26. 26.

    L.S. Liebovitch, J. Fischbarg, J.P. Koniarek, Math. Biosci. 84, 37 (1987)

  27. 27.

    H. A. do Prado, A.J.B. Luiz, H.C. Filho, Computational methods for agricultural research: advances and applications. Information Science Reference, Hershey (2011).

  28. 28.

    N.C. Kenkel, A.J. Irwin, Abstr. Bot. 79, 77–100 (1994)

  29. 29.

    S.G. Chen, R. Ceulemans, I. Impens, For. Ecol. Manage. 69, 97 (1994)

  30. 30.

    E. Perfect, B.D. Kay, Soil Sci. Soc. Am. J. 55, 1552 (1991)

  31. 31.

    E. Perfect, B.D. Kay, V. Rasiah, Soil Sci. Soc. Am. J. 57, 896 (1993)

  32. 32.

    O.M. Bruno, R. De Oliveira Plotze, M. Falvo, M. De Castro, Inf. Sci. 178, 2722 (2008)

  33. 33.

    K.W. Ketipearachchi, J. Tatsumi, Plant Prod. Sci. 3, 289 (2000)

  34. 34.

    M.K. Biswas, T. Ghose, S. Guha, P.K. Biswas, Pattern Recognit. Lett. 19, 309 (1998)

  35. 35.

    N. Buchman, K. Cuddington, Environ. Entomol. 38, 962 (2009)

  36. 36.

    P.E. Waggoner, J.-Y. Parlange, Plant Physiol. 57, 153 (1976)

  37. 37.

    A. Kamal, Physiological and biochemical responses of medicinally important nigella sativa plant in different phases of germination (Integral University, Lucknow, 2013)

  38. 38.

    K. Weitbrecht, K. Müller, G. Leubner-Metzger, J. Exp. Bot. 62, 3289 (2011)

  39. 39.

    T. Bareke, Adv. Plants Agric. Res. 8, 336 (2018)

  40. 40.

    M.A.O. Santos, A.D.L.C. Novembre, J. Marcos-Filho, Seed Sci. Technol. 35, 213 (2007)

  41. 41.

    E.A. Hunter, C.A. Glasbey, R.E.L. Naylor, J. Agric. Sci. 102, 207 (1984)

  42. 42.

    V.D. Rajput, T. Minkina, S. Suskova, S. Mandzhieva, V. Tsitsuashvili, V. Chapligin, A. Fedorenko, Bionanoscience 8, 36 (2018)

  43. 43.

    P. Moni, M. Wilhelm, K. Rezwan, RSC Adv. 7, 37559 (2017)

  44. 44.

    M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A.S. Biris, ACS Nano 3, 3221 (2009)

  45. 45.

    M. Iqbal, M. Shafiq, S. Zaidi, M. Athar, Glob. J. Environ. Sci. Manag. 1, 283 (2015)

  46. 46.

    M.S. Swapna, V. Raj, H.V.S. Devi, S. Sankararaman, Photochem. Photobiol. Sci. 18, 1382 (2019)

  47. 47.

    M.S. Swapna, S. Sankararaman, J. Mater. Sci. Nanotechnol. 5, 104 (2017)

  48. 48.

    M.S. Swapna, S. Sankararaman, Int. Nano Lett. 9, 221 (2019)

  49. 49.

    P.S. Addison, The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance (CRC, Oxford, 2017)

  50. 50.

    P.J.M. Pelgrom, R.M. Boom, M.A.I. Schutyser, Food Bioprocess Technol. 8, 1495 (2015)

  51. 51.

    L.L. De Azevedo Bittencourt, C. Pedrosa, V.P. De Sousa, A.P.T. Pierucci, M. Citelli, Plant Foods Hum. Nutr. 68, 333 (2013)

  52. 52.

    M.V. Khodakovskaya, K. De Silva, A.S. Biris, E. Dervishi, H. Villagarcia, ACS Nano 6, 2128 (2012)

  53. 53.

    K. Pandey, M.H. Lahiani, V.K. Hicks, M.K. Hudson, M.J. Green, M. Khodakovskaya, PLoS ONE 13, e0202274 (2018)

  54. 54.

    R. Nair, M.S. Mohamed, W. Gao, T. Maekawa, Y. Yoshida, P.M. Ajayan, D.S. Kumar, J. Nanosci. Nanotechnol. 12, 2212 (2012)

  55. 55.

    M.S. Swapna, S. Sankararaman, Nano-Struct. Nano-Obj. 19, 100375 (2019)

  56. 56.

    M.S. Swapna, S. Sankararaman, J. Fluoresc. 28, 543 (2018)

  57. 57.

    E. Xu, M. Chen, H. He, C. Zhan, Y. Cheng, H. Zhang, Z. Wang, Front. Plant Sci. 7, 2006 (2017)

  58. 58.

    S.E.B. Gould, D.A. Rees, J. Sci. Food Agric. 16, 702 (1965)

  59. 59.

    A.M.S.A. Qados, J. Saudi Soc. Agric. Sci. 10, 7 (2011)

  60. 60.

    H. Zhang, L.J. Irving, Y. Tian, D. Zhou, South Afr. J. Bot. 78, 203 (2012)

  61. 61.

    P. Neumann, Plant. Cell Environ. 20, 1193 (1997)

  62. 62.

    R. Lahlali, Y. Jiang, S. Kumar, C. Karunakaran, X. Liu, F. Borondics, E. Hallin, R. Bueckert, Front Plant Sci. 5, 747 (2014)

  63. 63.

    L. Beevers, F.S. Guernsey, Plant Physiol. 41, 1455 (1966)

  64. 64.

    B.R. Wood, Chem. Soc. Rev. 45, 1980 (2016)

  65. 65.

    G.R. Barker, T. Douglas, Nature 188, 943 (1960)

Download references

Acknowledgements

The authors are thankful to Dr. K. V. Dominic, Professor of English (Retired) and Editor-in-Chief, Writers Editors Critics (WEC) for the support given in English language editing.

Author information

All authors contributed equally to this manuscript.

Correspondence to Sankaranarayana Sankararaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants

This article does not contain any studies with human participants performed by any of the author.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.N.S., Sreejyothi, S. & Sankararaman, S. Investigation of fractality and variation of fractal dimension in germinating seed. Eur. Phys. J. Plus 135, 38 (2020). https://doi.org/10.1140/epjp/s13360-019-00061-8

Download citation