Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rainbow’s gravity corrections to the black hole global Casimir effect

  • 34 Accesses

Abstract

In this manuscript, we compute corrections to the global Casimir effect at zero and finite temperature due to rainbow gravity (parametrized by \(\xi \)). For this, we use the solutions for the scalar field with mass m in the deformed Schwarzschild background and the corresponding quantized energies of the system, which represent the stationary states of the field and yield the stable part of the quantum vacuum energy. The analysis is made here by considering the limit for which the source mass, M, approaches zero, to verify the effects on the global Casimir effect in mini-black holes near to the Planck scale, \(\omega _P\). We find a singular behavior for the regularized vacuum energy at zero temperature and for all the corresponding thermodynamic quantities when \(m^2=\omega ^2_P/\xi \), what can be seen as the limit of validity of the model. Furthermore, we show that the remnant Casimir tension over the event horizon in the limit \(M\rightarrow 0\) is finite for any temperature and all the space of parameters. In fact, we show that the remnant tension receives no corrections from rainbow gravity. This points to the fact that such a behavior may be an universal property of this kind of system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). https://doi.org/10.1103/PhysRevD.79.084008. arXiv:0901.3775 [hep-th]

  2. 2.

    P. Horava, Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett 102, 161301 (2009). https://doi.org/10.1103/PhysRevLett.102.161301. arXiv:0902.3657 [hep-th]

  3. 3.

    G. Alencar, V.B. Bezerra, M.S. Cunha, C.R. Muniz, On effective spacetime dimension in the Hořava–Lifshitz gravity. Phys. Lett. B 747, 536 (2015). https://doi.org/10.1016/j.physletb.2015.06.049. arXiv:1505.05087 [hep-th]

  4. 4.

    C.R. Muniz, V.B. Bezerra, M.S. Cunha, Casimir effect in the Hořava–Lifshitz gravity with a cosmological constant. Annals Phys. 359, 55 (2015). https://doi.org/10.1016/j.aop.2015.04.014. arXiv:1405.5424 [hep-th]

  5. 5.

    A.E. Bernardini, P. Leal, O. Bertolami, Quantum to classical transition in the Hořava–Lifshitz quantum cosmology. JCAP 1802(02), 025 (2018). https://doi.org/10.1088/1475-7516/2018/02/025. arXiv:1711.02627 [gr-qc]

  6. 6.

    F. Girelli, E.R. Livine, Physics of deformed special relativity. Braz. J. Phys. 35, 432 (2005). https://doi.org/10.1590/S0103-97332005000300011. arXiv:gr-qc/0412079

  7. 7.

    K. Imilkowska, J. Kowalski-Glikman, Doubly special relativity as a limit of gravity. Lect. Notes Phys. 702, 279 (2006). https://doi.org/10.1007/3-540-34523-X-10. arXiv:gr-qc/0506084

  8. 8.

    G. Amelino-Camelia, Building a case for a Planck-scale-deformed boost action: the Planck-scale particle-localization limit. Int. J. Mod. Phys. D 14, 2167 (2005). https://doi.org/10.1142/S0218271805007978. arXiv:gr-qc/0506117

  9. 9.

    J. Hackett, Asymptotic flatness in rainbow gravity. Class. Quant. Grav. 23, 3833 (2006). https://doi.org/10.1088/0264-9381/23/11/010. arXiv:gr-qc/0509103

  10. 10.

    G. Amelino-Camelia, “Some encouraging and some cautionary remarks on doubly special relativity in quantum gravity,” https://doi.org/10.1142/9789812704030-0317 arXiv:gr-qc/0402092

  11. 11.

    R. Garattini, B. Majumder, Naked singularities are not singular in distorted gravity. Nucl. Phys. B 884, 125 (2014). https://doi.org/10.1016/j.nuclphysb.2014.04.014. arXiv:1311.1747 [gr-qc]

  12. 12.

    D. Amati, M. Ciafaloni, G. Veneziano, Can space-time be probed below the string size? Phys. Lett. B 216, 41 (1989). https://doi.org/10.1016/0370-2693(89)91366-X

  13. 13.

    R. Garattini, E.N. Saridakis, Eur. Phys. J. C 75(7), 343 (2015). https://doi.org/10.1140/epjc/s10052-015-3562-y. arXiv:1411.7257 [gr-qc]

  14. 14.

    A.F. Ali, M.M. Khalil, A proposal for testing gravity’s rainbow. EPL 110(2), 20009 (2015). https://doi.org/10.1209/0295-5075/110/20009. arXiv:1408.5843 [gr-qc]

  15. 15.

    R. Garattini, Gravity’s rainbow and black hole entropy. J. Phys. Conf. Ser. 942(1), 012011 (2017). https://doi.org/10.1088/1742-6596/942/1/012011

  16. 16.

    V.B. Bezerra, H.R. Christiansen, M.S. Cunha, C.R. Muniz, Exact solutions and phenomenological constraints from massive scalars in a gravity’s rainbow spacetime. Phys. Rev. D 96(2), 024018 (2017). https://doi.org/10.1103/PhysRevD.96.024018. arXiv:1704.01211 [gr-qc]

  17. 17.

    Y. Gim, H. Um, W. Kim, Black hole complementarity with the generalized uncertainty principle in gravity’s rainbow. JCAP 1802(02), 060 (2018). https://doi.org/10.1088/1475-7516/2018/02/060. arXiv:1712.04444 [gr-qc]

  18. 18.

    Y. Heydarzade, P. Rudra, F. Darabi, A.F. Ali, M. Faizal, Vaidya spacetime in massive gravity’s rainbow. Phys. Lett. B 774, 46 (2017). https://doi.org/10.1016/j.physletb.2017.09.049. arXiv:1710.00673 [gr-qc]

  19. 19.

    N.A. Nilsson, M.P. Dabrowski, Phys. Dark Univ. 18, 115 (2017). https://doi.org/10.1016/j.dark.2017.10.003. arXiv:1411.7257 [gr-qc]

  20. 20.

    A. Zhuk, H. Kleinert, “Casimir effect at nonzero temperatures in a closed Friedmann Universe. Theor. Math. Phys. 109, 1483–1493 (1996). https://doi.org/10.1007/BF02072013

  21. 21.

    V.B. Bezerra, H.F. Mota, C.R. Muniz, Casimir effect in the rainbow Einstein’s universe. EPL 120, 10005 (2017). https://doi.org/10.1209/0295-5075/120/10005

  22. 22.

    H. B. G. Casimir, “On the Attraction Between Two Perfectly Conducting Plates,” Indag. Math. 10, 261 (1948) [Kon. Ned. Akad. Wetensch. Proc. 51, 793 (1948)] [Front. Phys. 65, 342 (1987)] [Kon. Ned. Akad. Wetensch. Proc. 100N3-4, 61 (1997)]

  23. 23.

    M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Int. Ser. Monogr. Phys. 145, 1 (2009)

  24. 24.

    V.B. Bezerra, V.M. Mostepanenko, H.F. Mota, C. Romero, Thermal Casimir effect for neutrino and electromagnetic fields in closed Friedmann cosmological model. Phys. Rev. D 84, 104025 (2011). https://doi.org/10.1103/PhysRevD.84.104025. arXiv:1110.4504 [gr-qc]

  25. 25.

    V.B. Bezerra, H.F. Mota, C.R. Muniz, Thermal Casimir effect in closed cosmological models with a cosmic string. Phys. Rev. D 89(2), 024015 (2014). https://doi.org/10.1103/PhysRevD.89.024015

  26. 26.

    H.F. Mota, V.B. Bezerra, Topological thermal Casimir effect for spinor and electromagnetic fields. Phys. Rev. D 92(12), 124039 (2015). https://doi.org/10.1103/PhysRevD.92.124039

  27. 27.

    V.B. Bezerra, H.F. Mota, C.R. Muniz, Remarks on a gravitational analogue of the Casimir effect. Int. J. Mod. Phys. D 25(09), 1641018 (2016). https://doi.org/10.1142/S0218271816410182

  28. 28.

    C.R. Muniz, M.O. Tahim, G.D. Saraiva, M.S. Cunha, Vacuum polarization at the boundary of a topological insulator. Phys. Rev. D 92(2), 025035 (2015). https://doi.org/10.1103/PhysRevD.92.025035. arXiv:1412.2577 [hep-th]

  29. 29.

    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta regularization techniques with applications (World Scientific, Singapore, 1994), p. 319

  30. 30.

    C.R. Muniz, M.O. Tahim, M.S. Cunha, H.S. Vieira, JCAP 1801(01), 006 (2018). https://doi.org/10.1088/1475-7516/2018/01/006. arXiv:1510.06655 [gr-qc]

  31. 31.

    L. Smolin, Falsifiable predictions from semiclassical quantum gravity. Nucl. Phys. B 742, 142 (2006). https://doi.org/10.1016/j.nuclphysb.2006.02.017. arXiv:hep-th/0501091

  32. 32.

    Y.B. Zeldovich, Towards the theory of mini black holes with subplanckian mass, in Quantum gravity, ed. by M.A. Markov, P.C. West (Springer, Boston, MA, 1984). https://doi.org/10.1007/978-1-4613-2701-1_18

  33. 33.

    R.M. Nugaev, V.I. Bashkov, Particle creation by a black hole as a consequence of the Casimir effect. Phys. Lett. A 69, 385 (1979). https://doi.org/10.1016/0375-9601(79)90383-9

  34. 34.

    J.R. Mureika, Primordial black hole evaporation and spontaneous dimensional reduction. Phys. Lett. B 716, 171 (2012). https://doi.org/10.1016/j.physletb.2012.08.029. arXiv:1204.3619 [gr-qc]

  35. 35.

    A.G. Tzikas, P. Nicolini, J. Mureika, B. Carr, Primordial black holes in a dimensionally reduced universe. JCAP 1812(12), 033 (2018). https://doi.org/10.1088/1475-7516/2018/12/033. arXiv:1811.09518 [gr-qc]

  36. 36.

    A. Addazi, G. Calcagni, A. Marcianò, “New Standard Model constraints on the scales and dimension of spacetime,” JHEP12(2018)130 https://doi.org/10.1007/JHEP12(2018)130 arXiv:1810.08141 [hep-ph]

Download references

Acknowledgements

The authors would like to thank Alexandra Elbakyan, for removing all barriers in the way of science. We acknowledge the financial support provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) through PRONEM PNE-0112-00085.01.00/16.

Author information

Correspondence to G. Alencar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alencar, G., Filho, R.N.C., Cunha, M.S. et al. Rainbow’s gravity corrections to the black hole global Casimir effect. Eur. Phys. J. Plus 135, 18 (2020). https://doi.org/10.1140/epjp/s13360-019-00044-9

Download citation