Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solutions of Klein–Gordon equation with Mie-type potential via the Laplace transforms


A study is undertaken to derive the exact solutions of the Klein–Gordon with the Mie-type potential in the presence of the nonzero space component of a vector potential field. The wave functions and the energy spectrum are derived via the Laplace transformation method and by assuming equal scalar and time component of the vector potential. The Mie-type potential describes four different types of potential at the same time. The energy spectrum separately is obtained for each potential, and an estimation of the most general case is introduced.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, 1967)

  2. 2.

    S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordrecht, 2007)

  3. 3.

    L.D. Landau, E.M. Lifshitz, Quantum Mechnaics, Non-Relativistic Theory (Pergamon, New York, 1977)

  4. 4.

    F. Dominguez-Adame, Bound states of the Klein–Gordon equation with vector and scalar Hulthén-type potentials. Phys. Lett. A 136(4–5), 175–177 (1989)

  5. 5.

    C.Y. Chen, D.S. Sun, F.L. Lu, Scattering states of the KleinGordon equation with Coulomb-like scalar plus vector potentials in arbitrary dimension. Phys. Lett. A 330(6), 424–428 (2004)

  6. 6.

    G. Chen, Solution of the KleinGordon for exponential scalar and vector potentials. Phys. Lett. A 339, 300303 (2005)

  7. 7.

    A.S. de Castro, KleinGordon particles in mixed vectorscalar inversely linear potentials. Phys. Lett. A 338(2), 81–89 (2005)

  8. 8.

    G. Chen, Z.D. Chen, P.C. Xuan, Semiclassical methods to the KleinGordon equation with the unequal scalar and vector potentials. Phys. Scripta 74(3), 367 (2006)

  9. 9.

    G. Chen, Z.D. Chen, P.C. Xuan, Exactly solvable potentials of the KleinGordon equation with the supersymmetry method. Phys. Lett. A 352(4–5), 317–320 (2006)

  10. 10.

    A. de Souza Dutra, G. Chen, On some classes of exactly-solvable KleinGordon equations. Phys. Lett. A 349(5), 297–301 (2006)

  11. 11.

    S.M. Ikhdair, R. Sever, Any \(\ell \)-state improved quasi-exact analytical solutions of the spatially dependent mass KleinGordon equation for the scalar and vector Hulthén potentials. Phys. Scripta 79(3), 035002 (2009)

  12. 12.

    H. Hassanabadi, S. Zarrinkamar, H. Rahimov, Approximate solution of D-Dimensional KleinGordon equation with Hulthén-Type potential via SUSYQM. Commun. Theor. Phys. 56, 423428 (2011)

  13. 13.

    H. Sun, Quantization rule for relativistic Klein–Gordon equation. Bull. Korean Chem. Soc. 32, 4233 (2011)

  14. 14.

    M. Aktas, A novel SUSY energy bound-states treatment of the Klein–Gordon equation with PT-symmetric and q-deformed parameter Hulthén potential. Europhys. Lett. 121(1), 10005 (2018)

  15. 15.

    Y.F. Diao, L.Z. Yi, C.S. Jia, Bound states of the KleinGordon equation with vector and scalar five-parameter exponential-type potentials. Phys. Lett. A 332(3–4), 157–167 (2004)

  16. 16.

    A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Dirac and KleinGordon equations with equal scalar and vector potentials. Phys. Lett. A 349, 8797 (2006)

  17. 17.

    S.M. Ikhdair, R. Sever, Exact bound states of the D-dimensional KleinGordon equation with equal scalar and vector ring-shaped pseudoharmonic potential. Int. J. Mod. Phys. C 19(09), 1425–1442 (2008)

  18. 18.

    S.M. Ikhdair, Rotational and vibrational diatomic molecule in the KleinGordon equation with hyperbolic scalar and vector potentials. Int. J. Mod. Phys. C 20(10), 1563–1582 (2009)

  19. 19.

    Y. Xu, S. He, C.S. Jia, Approximate analytical solutions of the KleinGordon equation with the PöschlTeller potential including the centrifugal term. Phys. Scripta 81(4), 045001 (2010)

  20. 20.

    T.T. Ibrahim, K.J. Oyewumi, S.M. Wyngaardt, Analytical solution of N-dimensional Klein–Gordon and Dirac equations with Rosen–Morse potential. Eur. Phys. J. Plus 127(9), 100 (2012)

  21. 21.

    O.J. Oluwadare, K.J. Oyewumi, C.O. Akoshile, O.A. Babalola, Approximate analytical solutions of the relativistic equations with the DengFan molecular potential including a Pekeris-type approximation to the (pseudo or) centrifugal term. Phys. Scripta 86(3), 035002 (2012)

  22. 22.

    S.M. Ikhdair, M. Hamzavi, KleinGordon solutions for a Yukawa-like potential. Zeitschrift für Naturforschung A 68(12), 715–724 (2013)

  23. 23.

    C.S. Jia, T. Chen, S. He, Bound state solutions of the KleinGordon equation with the improved expression of the ManningRosen potential energy model. Phys. Lett. A 377(9), 682–686 (2013)

  24. 24.

    T. Chen, S.R. Lin, C.S. Jia, Solutions of the Klein–Gordon equation with the improved Rosen–Morse potential energy model. Eur. Phys. J. Plus 128(7), 69 (2013)

  25. 25.

    X.Y. Chen, T. Chen, C.S. Jia, Solutions of the Klein–Gordon equation with the improved Manning–Rosen potential energy model in D dimensions. Eur. Phys. J. Plus 129(4), 75 (2014)

  26. 26.

    A.N. Ikot, B.C. Lutfuoglu, M.I. Ngwueke, M.E. Udoh, S. Zare, H. Hassanabadi, Klein–Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions. Eur. Phys. J. Plus 131(12), 419 (2016)

  27. 27.

    G. Mie, Zur kinetischen Theorie der einatomigen Körper. Ann. Phys. 316(8), 657–697 (1903)

  28. 28.

    S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1974)

  29. 29.

    Ş. Erkoç, R. Sever, Path-integral solution for a Mie-type potential. Phys. Rev. D 30, 2117 (1984)

  30. 30.

    K.J. Oyewumi, Analytical solutions of the Kratzer–Fues potential in an arbitrary number of dimensions. Found. Phys. lett. 18(1), 75–84 (2005)

  31. 31.

    O. Bayrak, I. Boztosun, H. Ciftci, Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. Int. J. Quant. Chem. 107(3), 540–544 (2007)

  32. 32.

    S.M. Ikhdair, R. Sever, Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation. J. Mol. Struct. Theochem. 855(1–3), 13–17 (2008)

  33. 33.

    C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48(2), 337–350 (2009)

  34. 34.

    D. Agboola, Complete analytic solutions of the Mie-type potentials in N-dimensions. Acta Phys. Pol. A 120(3), 371–377 (2011)

  35. 35.

    A. Arda, R. Sever, Exact solutions of the Schrödinger equation via Laplace transform approach: pseudoharmonic potential and Mie-type potentials. J. Math. Chem. 50, 971–980 (2012)

  36. 36.

    I.B. Okon, E.E. Ituen, O. Popoola, A.D. Antia, Analytical solutions of Schrödinger equation with Mie-type potential using factorisation method. Int. J. Recent Adv. Phys. 2(2), 1–7 (2013)

  37. 37.

    T. Das, A Laplace transform approach to find the exact solution of the \(N\)-dimensional Schrödinger equation with Mie-type potentials and construction of Ladder operators. J. Math. Chem. 53(2), 618–628 (2015)

  38. 38.

    M. Molski, Coherent states of the Kratzer–Fues oscillator. Phys. Rev. A 76(2), 022107 (2007)

  39. 39.

    J.J. Peña, A. Menéndez, J. García-Ravelo, J. Morales, Mie-type potential from a class of multiparameter exponential-type potential: bound state solutions in D dimensions. J. Phys. Conf. Ser. 633(1), 012025 (2015)

  40. 40.

    A. Dehyar, G. Rezaei, A. Zamani, Electronic structure of a spherical quantum dot: effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E 84, 175–181 (2016)

  41. 41.

    F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramosd, The nonlinear optical properties of GaAs-based quantum wells with Kratzer–Fues confining potential: role of applied static fields and non-resonant laser radiation. Optik 185, 881887 (2019)

  42. 42.

    G.H. Shortley, The inverse-cube central force field in quantum mechanics. Phys. Rev. 38, 120–127 (1931)

  43. 43.

    E.A. Guggenheim, The inverse square potential field. R. Phys. Soc. 89, 491–493 (1966)

  44. 44.

    P. Baras, J.A. Goldstein, Remarks on the inverse squre potential in quantum mechanics. Diff. Equ. 92, 31–35 (1984)

  45. 45.

    S. Moroz, R. Schmidt, Nonrelativistic inverse square potential, scale anomaly, and complex extension. Ann. Phys. 325(2), 491–513 (2010)

  46. 46.

    V.M. Vasyuta, V.M. Tkachuk, Falling of a quantum particle in an inverse square attractive potential. Eur. J. phys. D 70(267), 1–5 (2016)

  47. 47.

    A. Kratzer, Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys. 3(5), 289–307 (1920)

  48. 48.

    E. Fues, Das Eigenschwingungsspektrum zweiatomiger Moleküle in der Undulationsmechanik. Ann. Phys. 80, 367–396 (1926)

  49. 49.

    C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kratzers molecular potential. Chem. Phys. Lett. 417, 326–329 (2006)

  50. 50.

    P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929)

  51. 51.

    W.C. Qiang, Bound states of the Klein–Gordon and Dirac equations for potential \(V (r)= \frac{A}{r^2}-\frac{B}{r}\). Chin. Phys. B 12(10), 1054–1057 (2003)

  52. 52.

    M. Koçak, Bound state solutions of KleinGordon equation with the Kratzer potential. Chin. Phys. Lett. 24(2), 315 (2007)

  53. 53.

    D.A. Nugraha, A. Suparmi, C. Cari, B.N. Pratiwi, Asymptotic iteration method for solution of the Kratzer potential in D-dimensional Klein-Gordon equation. J. Phys. Conf. Ser. 820(1), 012014 (2017)

  54. 54.

    H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Approximate solutions of Klein-Gordon equation with Kratzer potential. Adv. High Energy Phys. 2011, 1–6 (2011)

  55. 55.

    F. Yasuk, A. Durmus, I. Boztosun, Exact analytical solution to the relativistic Klein–Gordon equation with noncentral equal scalar and vector potentials. J. Math. Phys. 47, 082302 (2006)

  56. 56.

    A. Durmus, F. Yasuk, Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential. J. Chem. Phys. 126(7), 074108 (2007)

  57. 57.

    C. Berkdemir, Relativistic treatment of a spin-zero particle subject to a Kratzer-type potential. Am. J. Phys. 75(1), 81–86 (2007)

  58. 58.

    S.M. Ikhdair, R. Sever, Relativistic solution in D-dimensions to a spin-zero particle for equal scalar and vector ring-shaped Kratzer potential. Cent. Eur. J. Phys. 6(1), 141–152 (2008)

  59. 59.

    E. Kreyszig, Adv. Eng. Math. (Wiley, New York, 1979)

  60. 60.

    G. Chen, The exact solutions of the Schrödinger equation with the Morse potential via Laplace transforms. Phys. Lett. A 326(1–2), 55–57 (2004)

  61. 61.

    S. Ortakaya, Exact solutions of the Klein Gordon equation with ring-shaped oscillator potential by using the Laplace integral transform. Chin. Phys. B 21(7), 070303 (2012)

  62. 62.

    A. Arda, R. Sever, Non-central potentials, exact solutions and Laplace transform approach. J. Math. Chem. 50(6), 1484–1494 (2012)

  63. 63.

    D.R.M. Pimentel, A.S. de Castro, A Laplace transform approach to the quantum harmonic oscillator. Eur. J. Phys. 34(1), 199 (2012)

  64. 64.

    M. Eshghi, S.M. Ikhdair, Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method. Chin. Phys. B 23(12), 120304 (2014)

  65. 65.

    S. Miraboutalebi, L. Rajaei, Solutions of N-dimensional Schrdinger equation with Morse potential via Laplace transforms. J. Math. Chem. 52(4), 1119–1128 (2014)

  66. 66.

    S. Miraboutalebi, The bound state solution for the Morse potential with a localized mass profile. Chin. Phys. B 25(10), 100301 (2016)

  67. 67.

    G. Chen, Approximate series solutions of the N-dimensional position-dependent mass Schrdinger equation. Phys. Lett. A 329, 22–27 (2004)

Download references

Author information

Correspondence to S. Miraboutalebi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miraboutalebi, S. Solutions of Klein–Gordon equation with Mie-type potential via the Laplace transforms. Eur. Phys. J. Plus 135, 16 (2020).

Download citation