N-fold Darboux transformation of the two-component Kundu–Eckhaus equations and non-symmetric doubly localized rogue waves

  • Deqin Qiu
  • Wenguang ChengEmail author
Regular Article


The two-component Kundu–Eckhaus (KE) equations were introduced for the first time in 1999. Very recently, the two-component KE equations considered as a model of describing the effect of quintic nonlinearity on the ultra-short optical pulse propagation in non-Kerr media have been intensively studied. In this paper, we construct an analytical and explicit representation of the Darboux transformation (DT) for the two-component KE equations. Compared with the DT constructed by researchers before, the DT here is expressed by the initial eigenfunctions, spectral parameters, and ‘seed’ solution. As applications of DT, the explicit expressions of non-symmetric rogue wave of two-component KE equations and KE equation are displayed, and the differences between the non-symmetric and symmetric rogue wave for the KE equation are discussed in detail.



The work of D. Q. Qiu is supported by the National Natural Science Foundation of China (NNSFC) [Grant numbers 11871471,11931017], and the Fundamental Research Funds for Central Universities. The work of W. G. Cheng is supported by the Scientific Research Foundation of Educational Committee of Yunnan Province (No. 2019J0735). D. Q. Qiu acknowledges sincerely Prof. Q. P. Liu for many useful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C. Kharif, E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603–634 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)ADSzbMATHGoogle Scholar
  3. 3.
    C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, Berlin, 2009)zbMATHGoogle Scholar
  4. 4.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)ADSMathSciNetGoogle Scholar
  5. 5.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)ADSGoogle Scholar
  6. 6.
    B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)Google Scholar
  7. 7.
    H. Bailung, S.K. Sharma, Y. Nakamura, Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)ADSGoogle Scholar
  8. 8.
    A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)ADSGoogle Scholar
  9. 9.
    YuV Bludov, V.V. Konotop, N. Akhmediev, Matter rogue waves. Phys. Rev. A 80, 033610 (2009)ADSGoogle Scholar
  10. 10.
    K. Dysthe, H.E. Krogstad, P. Müller, Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 87–310 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    E.A. Kuznetsov, Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22, 507–508 (1977)ADSGoogle Scholar
  12. 12.
    T. Kawata, H. Inoue, Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions. J. Phys. Soc. Jpn. 44, 1722–1729 (1978)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    N. Akhmediev, V.I. Korneev, Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)zbMATHGoogle Scholar
  15. 15.
    D.H. Peregrine, Water waves, nonlinear Schrödinger equation and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)MathSciNetzbMATHGoogle Scholar
  16. 16.
    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)ADSGoogle Scholar
  17. 17.
    J.S. He, L.H. Wang, L.J. Li, K. Porsezian, R. Erdélyi, Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)ADSGoogle Scholar
  18. 18.
    A. Ankiewicz, P. Clarkson, N. Akhmediev, Rogue waves, rational solutions, the patterns of their zeros and integral relations. J. Phys. A Math. Theor. 43, 122002 (2010)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    P. Gaillard, Other 2N–2 parameters solutions of the NLS equation and 2N + 1 highest amplitude of the modulus of the Nth order AP breather. J. Phys. A Math. Theor. 48, 145203 (2015)ADSzbMATHGoogle Scholar
  20. 20.
    L.H. Wang, C.H. Yang, J. Wang, J.S. He, The height of an nth-order fundamental rogue wave for the nonlinear Schrödinger equation. Phys. Lett. A 381, 20 (2017)ADSGoogle Scholar
  21. 21.
    P. Dubard, V.B. Matveev, Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Sys. Sci. 11, 667–672 (2011)ADSGoogle Scholar
  22. 22.
    P. Dubard, V. Matveev, Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26, R93–R125 (2013)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    B.L. Guo, L.M. Ling, Q.P. Liu, High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317–344 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    S.W. Xu, J.S. He, L.H. Wang, The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 305203 (2011)zbMATHGoogle Scholar
  25. 25.
    Y.S. Zhang, L.J. Guo, J.S. He, Z.X. Zhou, Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Y. Ohta, J. Yang, Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)ADSGoogle Scholar
  27. 27.
    Y. Ohta, J. Yang, Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    N. Akhmediev, J.M. Soto-Crespo, N. Devine, N.P. Hoffmann, Rogue wave spectra of the Sasa–Satsuma equation. Phys. D 294, 37–42 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    S.H. Chen, Twisted rogue-wave pairs in the Sasa–Satsuma equation. Phys. Rev. E 88, 023202 (2013)ADSGoogle Scholar
  30. 30.
    L.J. Guo, Y.S. Zhang, S.W. Xu, Z.W. Wu, J.S. He, The higher order rogue wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 89, 035501 (2014)ADSGoogle Scholar
  31. 31.
    Y.S. Zhang, L.J. Guo, S.W. Xu, Z.W. Wu, J.S. He, The hierarchy of higher order solutions of the derivative nonlinear Schrödinger equation. Commun. Nonlinear. Sci. Numer. Simulat. 19, 1706–1722 (2014)ADSGoogle Scholar
  32. 32.
    Y.S. Zhang, L.J. Guo, A. Chabchoub, J.S. He, Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger eqatuion. Rom. J. Phys. 62, 102 (2017)Google Scholar
  33. 33.
    F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)ADSGoogle Scholar
  34. 34.
    L.C. Zhao, J. Liu, Localized nonlinear waves in a two-mode nonlinear fiber. J. Opt. Soc. Am. B 29, 3119 (2012)ADSGoogle Scholar
  35. 35.
    L.M. Ling, B.L. Guo, L.C. Zhao, High-order rogue waves in vector nonlinear Schrödinger equations. Phys. Rev. E 89, 041201 (2014)ADSGoogle Scholar
  36. 36.
    S.H. Chen, L.Y. Song, Rogue waves in coupled Hirota systems. Phys. Rev. E 87, 032910 (2013)ADSGoogle Scholar
  37. 37.
    S.H. Chen, Dark and composite rogue waves in the coupled Hirota equations. Phys. Lett. A 378, 2851 (2014)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    X. Wang, Y.Q. Li, Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion 51, 1149 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    L.C. Zhao, J. Liu, Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation. Phys. Rev. E 87, 013201 (2013)ADSGoogle Scholar
  40. 40.
    S.H. Chen, Darboux transformation and dark rogue wave states arising from two-wave resonance interaction. Phys. Lett. A 378, 1095 (2014)ADSzbMATHGoogle Scholar
  41. 41.
    A. Degasperis, S. Lombardo, Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)ADSGoogle Scholar
  42. 42.
    F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)ADSGoogle Scholar
  43. 43.
    T. Kanna, M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86, 5043 (2001)ADSGoogle Scholar
  44. 44.
    B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Optical dark rogue wave. Sci. Rep. 6, 20785 (2016)ADSGoogle Scholar
  45. 45.
    B. Frisquet, B. Kibler, J. Fatome, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Polarization modulation instability in a Manakov fiber system. Phys. Rev. A 92, 053854 (2015)ADSGoogle Scholar
  46. 46.
    B.L. Guo, L.M. Ling, Rogue wave, breathers and bright–dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)ADSGoogle Scholar
  47. 47.
    S.H. Chen, D. Mihalache, Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A Math. Theor. 48, 215202 (2015)ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    J.S. He, L.J. Guo, Y.S. Zhang, A. Chabchoub, Theoretical and experimental evidence of non-symmetric doubly localized rogue waves. Proc. R. Soc. A 470, 20140318 (2014)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    S.H. Chen, J.M. Soto-Crespo, P. Grelu, Watch-hand-like optical rogue waves in three-wave interactions. Opt. Express 23, 349–359 (2015)ADSGoogle Scholar
  50. 50.
    L. Wang, Y.J. Zhu, Z.Q. Wang, T. Xu, F.H. Qi, Y.S. Xue, asymmetric rogue Waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system. J. Phys. Soc. Jpn. 85, 024001 (2016)ADSGoogle Scholar
  51. 51.
    H.N. Chan, K.W. Chow, Rogue wave modes for the coupled nonlinear Schrödinger system with three components: a computational study. Appl. Sci. 7, 559 (2017)Google Scholar
  52. 52.
    Z.D. Li, C.Z. Huo, Q.Y. Li, P.B. He, T.F. Xu, Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations. Chin. Phys. B 27, 040505 (2018)ADSGoogle Scholar
  53. 53.
    Z.D. Li, Y.Y. Wang, P.B. He, Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations. Chin. Phys. B 28, 010504 (2019)ADSGoogle Scholar
  54. 54.
    B. Yang, J.K. Yang, Rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109, 945–973 (2019)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Experimental study of spatiotemporally localized surface gravity water waves. Phys. Rev. E 86, 016311 (2012)ADSGoogle Scholar
  56. 56.
    A. Chabchoub, N.P. Hoffmann, M. Onorato, N. Akhmediev, Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)Google Scholar
  57. 57.
    A. Chabchoub, N.P. Hoffmann, M. Onorato, A. Slunyaev, A. Sergeeva, E. Pelinovsky, N. Akhmediev, Observation of a hierarchy of up to fifth-order rogue wave in a water tank. Phys. Rev. E 86, 056601 (2012)ADSGoogle Scholar
  58. 58.
    Q. Guo, L. A. Couston, M. R. Alam, Rogue wave morphology in broadband nonbreaking seas, arXiv:1709.07486
  59. 59.
    N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997)zbMATHGoogle Scholar
  60. 60.
    A. Kundu, Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)ADSMathSciNetGoogle Scholar
  61. 61.
    F. Calogero, W. Eckhaus, Nonlinear evolution equations, rescalings, model PDEs and their integrability:I. Inverse Probl. 3, 229–262 (1987)ADSMathSciNetzbMATHGoogle Scholar
  62. 62.
    P.A. Clarkson, C.M. Cosgrove, Painlevé analysis of the nonlinear Schrödinger family of equations. J. Phys. A Math. Gen. 20, 2003–2024 (1987)ADSzbMATHGoogle Scholar
  63. 63.
    X.G. Geng, A hierarchy of non-linear evolution equations, its hamiltonian structure and classical integrable system. Phys. A 80, 241–251 (1992)Google Scholar
  64. 64.
    X.G. Geng, H.W. Tam, Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 68, 1508–1512 (1999)ADSzbMATHGoogle Scholar
  65. 65.
    S. Kakei, N. Sasa, J. Satsuma, Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)ADSzbMATHGoogle Scholar
  66. 66.
    Z. Feng, X. Wang, Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation. Phys. Scr. 64, 7–14 (2001)zbMATHGoogle Scholar
  67. 67.
    X. Lü, M.S. Peng, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simulat. 18, 2304–2312 (2013)ADSMathSciNetzbMATHGoogle Scholar
  68. 68.
    Q.L. Zha, On Nth-order rogue wave solution to the generalized nonlinear Schrödinger equation. Phys. Lett. A 377, 855–859 (2013)ADSMathSciNetGoogle Scholar
  69. 69.
    X. Wang, B. Yang, Y. Chen, Y.Q. Yang, Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89, 09521 (2014)Google Scholar
  70. 70.
    D.Q. Qiu, J.S. He, Y.S. Zhang, K. Porsezian, The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. A 471, 0236 (2015)MathSciNetzbMATHGoogle Scholar
  71. 71.
    R. Radhakrishnan, A. Kundu, M. Lakshmanan, Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. Phys. Rev. E 60, 3314 (1999)ADSGoogle Scholar
  72. 72.
    L. Albuch, B.A. Malomed, Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity. Math. Comput. Simul. 74, 312 (2007)MathSciNetzbMATHGoogle Scholar
  73. 73.
    W.R. Shan, F.H. Qi, R. Guo, Y.S. Xue, P. Wang, B. Tian, Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Scr. 85, 015002 (2012)ADSzbMATHGoogle Scholar
  74. 74.
    P. Wang, B. Tian, Symbolic computation on the bright soliton solutions for the generalized coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity. Opt. Commun. 285, 3567 (2012)ADSGoogle Scholar
  75. 75.
    X.Y. Xie, B. Tian, Y. Sun, L. Liu, Y. Jiang, Bright solitons for the coupled cubic-quintic non-linear Schrödinger equations. Opt. Quant. Electron. 48, 491 (2016)Google Scholar
  76. 76.
    W.R. Sun, B. Tian, H. Zhong, H.L. Zhen, Dark-bright soliton interactions for the coupled cubic-quintic nonlinear Schrödinger equations in fber optics. Laser Phys. 24, 085408 (2014)ADSGoogle Scholar
  77. 77.
    Y.Q. Yuan, B. Tian, L. Liu, H.P. Chai, Bright-dark and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations in a twin-core nonlinear optical fiber. Superlattice Microst. 111, 134 (2017)ADSGoogle Scholar
  78. 78.
    Y. Zhang, X.J. Nie, Q.L. Zha, Rogue wave solutions for the coupled cubic-quintic nonlinear Schröinger equations in nonlinear optics. Phys. Lett. A 378, 191 (2014)ADSMathSciNetGoogle Scholar
  79. 79.
    T. Xu, W.H. Chan, Y. Chen, Higher-order rogue wave pairs in the coupled cubic-quintic nonlinear Schrödinger equations. Commun. Theor. Phys. 70, 153–160 (2018)ADSMathSciNetGoogle Scholar
  80. 80.
    J.S. He, L. Zhang, Y. Cheng, Y.S. Li, Determinant representation of Darboux transformation for the AKNS system. Sci. China Ser. A Math. 49, 1867–1878 (2006)ADSMathSciNetzbMATHGoogle Scholar
  81. 81.
    L.H. Wang, J.S. He, H. Xu, J. Wang, K. Porsezian, Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)ADSMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of MathematicsChina University of Mining and TechnologyBeijingPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  3. 3.Department of MathematicsYuxi Normal UniversityYuxiPeople’s Republic of China

Personalised recommendations