Structural and electric properties of strontium barium titanate prepared by tartrate precursor method

  • 22 Accesses


Strontium barium titanate, Sr1−xBaxTiO3 (BST) was prepared using tartrate precursor method. The X-ray diffraction patterns were used for analyzing the phase compositions. Lattice parameter, crystallite size, X-ray density, bulk density and porosity were calculated. The IR spectra confirm the results of X-ray for the formation of the perovskite structure. The surface morphology of BST at different barium content (x) was studied by scanning electron microscopy (SEM). The DC resistivity was studied as a function of temperature and the mechanism of conduction at different Ba content was established.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    T. Mazon, M.A. Zaghete, J.A. Varela, E. Longo, Barium strontium titanate nanocrystalline thin films prepared by soft chemical method. J. Eur. Ceram. Soc. 27, 3799–3802 (2007)

  2. 2.

    N.D. Patel, M.H. Mangrola, K.G. Soni, V.G. Joshi, Structural and electrical properties of nanocrystalline barium strontium titanate. Mater. Today Proc. 4, 3842–3851 (2017)

  3. 3.

    L. Song, (Ba,Sr)TiO3 for multi-gigabit DRAM, 1998. Accessed Feb 2002

  4. 4.

    C. Weil, P. Wong, H. Downar, J. Wenger, R. Jakoby, Ferroelectric Thick Film Ceramics for Tunable Microwave Coplanar Phase Shifters. Frequenz 54, 11–12 (2000)

  5. 5.

    F. Zimmermann, M. Voigts, C. Weil, R. Jakoby, P. Wang, W. Menesklou, E. Ivers-Tiffee, J. Eur. Ceram. Soc. 21, 2019–2023 (2001)

  6. 6.

    Y. Liu, MEMS and BST technologies for microwave applications, in electrical and computer engineering, University of California, 2002, p. 140

  7. 7.

    H.V. Alexandru, C. Berbecaru, A. Ioachim, M.I. Toacsen, M.G. Banciu, L. Nedelcu, D. Ghetu, Mater. Sci. Eng. B 109, 152–159 (2004)

  8. 8.

    K.A. Razak, A. Asadov, J. Yoo, E. Haemmerle, W. Gao, Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method. J. Alloy Compd. 449, 19–23 (2008)

  9. 9.

    A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, Barium strontium titanate-based perovskite materials for microwave applications. Solid State Chem. 35, 513–520 (2007)

  10. 10.

    T. Badapanada, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, P.K. Sahoo, Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J. Alloys Compd. 645, 586–596 (2015)

  11. 11.

    A. Tawfik, O.M. Hemeda, A.M.A. Henaish, A.M. Dorgham, High piezoelectric properties of modified nano lead titanate zirconate ceramics. Mater. Chem. Phys. 211, 1–8 (2018)

  12. 12.

    C. Dong, A Windows-95-based program for powder X-ray diffraction data processing. PowderX Appl. Crystallogr. (Cph.) 32, 838 (1999)

  13. 13.

    S. Raja, C.S. Bellan, S. Sundaram, G. Subramani, Thickness dependence on structural, dielectric and AC conduction studies of vacuum evaporated Sr doped BaTiO3 thin films. Optik 127, 3200–3205 (2016)

  14. 14.

    A.E. Mahmoud, Issue and hints about UV-optical measurements of (Ba1 x Srx) TiO3 nano-powder synthesized by sol-gel method. Optik 158, 870–881 (2018)

  15. 15.

    Y.H. Huang, Y.J. Wu, J. Li, B. Liu, X.M. Chen, Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering. J. Alloy Compd. 701, 439–446 (2017)

  16. 16.

    L. Jin, W. Luo, L. Hou, Y. Tian, Q. Hu, L. Wang, L. Zhang, X. Lu, H. Du, X. Wei, Y. Yan, G. Liu, High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. J. Eur. Ceram. Soc. 39, 295–304 (2019)

  17. 17.

    F.F. Lange, Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989)

  18. 18.

    H.P. Li, J. Wang, R. Stevens, The effect of hydroxide gel drying on the characteristics of co-precipitated zirconia-hafnia powders. J Mat Soc 28, 553–560 (1993)

  19. 19.

    Y. Yao, S. Li, Y. Jia, S. Xie, Microstructure and dielectric properties of BaxSr1–xTiO3 ceramics prepared by direct current arc discharge technique. J. Alloy Compd. 651, 273–277 (2015)

  20. 20.

    P. Sittiketkorn, S. Thountom, T. Bongkarn, NU Sci. J. 5(2), 143–150 (2008)

  21. 21.

    X. Shen, Z. Zhou, F. Song, X. Meng, J. Sol-Gel Sci. Technol. 53, 405–411 (2010)

  22. 22.

    J.E. Jeon, H. Han, K.R. Park, Y.R. Hong, K.B. Shim, S. Mhin, Ceram. Int. 44, 1420–1424 (2018)

Download references

Author information

Correspondence to B. I. Salem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hemeda, O.M., Salem, B.I. & Mostafa, M. Structural and electric properties of strontium barium titanate prepared by tartrate precursor method. Eur. Phys. J. Plus 135, 46 (2020) doi:10.1140/epjp/s13360-019-00021-2

Download citation