Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The study of discrete cavity soliton lasers in presence of population inversion

  • 24 Accesses


The existence, dynamics and switching of bright and dark spatial soliton in coupled active cavities array above lasing threshold in presence of population inversion are studied here. Different types of discrete cavity soliton lasers are introduced and their stability is analyzed, together with the comparison of population inversion effects on bright and dark solitons. The effects of injection time, intensity, width, and phase difference of switching beam are analyzed to perform a successful ON/OFF switching.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    H. Chen, T. Lv, A. Zheng, Y. Han, Controlled switching of discrete solitons in periodically poled lithium niobate waveguide arrays. Appl. Opt. 25(8), 1663 (2013)

  2. 2.

    T.R.O. Melvina, A.R. Champneysa, P.G. Kevrekidisb, J. Cuevasc, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: existence, stability and dynamics. Elsevier Phys. D 237, 551–567 (2008)

  3. 3.

    K. Staliunas, O. Egorov, Y.S. Kivshar, F. Lederer, Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals. Phys. Rev. Lett. 101, 153903 (2008)

  4. 4.

    O.A. Egorov, F. Lederer, Spontaneously walking discrete cavity solitons. Opt. Lett. 38(7), 1010 (2013)

  5. 5.

    O. Egorov, F. Lederer, K. Staliunas, Subdiffractive discrete cavity solitons. Opt. Lett. 32(15), 2106 (2007)

  6. 6.

    B.H. Khiaban, K.M. Aghdami, R. Kheradmand, Switchable discrete cavity solitons in 2D waveguide structure with defect. Eur. Phys. J. D 69, 53 (2015)

  7. 7.

    K.M. Aghdami, M. Golshani, R. Kheradmand, Two-dimensional discrete cavity solitons: switching and all-optical gates. IEEE Photonics J. 4(4), 1147 (2012)

  8. 8.

    A. Kanshu, C.E. Ruter, D. Kip, J. Cuevas, P.G. Kevrekidis, Dark lattice solitons in one-dimensional waveguide arrays with defocusing saturable nonlinearity and alternating couplings. Eur. Phys. J. D 66, 182 (2012)

  9. 9.

    A. Motahharynia, K.M. Aghdami, R. Kheradmand, Modeling of population inversion in coupled active lasing cavities: aspects of the stability analysis. Chaos Solitons Fractals 118, 106–111 (2019)

  10. 10.

    K.J. Vahala, X. Yi, Q. Yang, Physics and applications of counter propagating solitons in microcavities. In: SPIE LASE (California, San Francisco, 2019)

  11. 11.

    B. Apter, N. Lapshina, A. Handelman, G. Rosenman, Light waveguiding in bioinspired peptide nanostructures. J. Pep. Sci. 25, 3164 (2019)

  12. 12.

    M. Eslami, S.Z. Gandomani, F. Prati, H. Tajalli, R. Kheradmand, Ultra low-energy switch based on a cavity soliton laser with pump modulation. J. Opt. 19, 015502 (2017)

  13. 13.

    O. Egorov, U. Peschel, F. Lederer, Mobility of discrete cavity solitons. Phys. Rev. E 72, 066603 (2005)

  14. 14.

    O. Egorov, U. Peschel, and F. Lederer, Discrete quadratic cavity solitons. Phys. Rev. E 71, 056612 (2005). https://doi.org/10.1103/PhysRevE.71.056612

  15. 15.

    M. Bache, F. Prati, G. Tissoni, R. Kheradmand, L.A. Lugiato, I. Protsenko, M. Brambilla, Cavity soliton laser based on VCSEL with saturable absorber. Appl. Phys. 81, 913–920 (2005)

  16. 16.

    J.E. Prilepsky, A.V. Yulin, M. Johansson, S.A. Derevyanko, Discrete solitons in coupled active lasing cavities. OSA, 2012

  17. 17.

    M. Golshani, S. Weimann, Kh. Jafari, M. Khazaei Nezhad, A. Langari, A. R. Bahrampour, T. Eichelkraut, S. M. Mahdavi, and A. Szameit Impact of loss on the wave dynamics in photonic waveguide lattices. arXiv[physics.optics] 1408.5740v2, 2014

  18. 18.

    Z. Shi, J. Xue, Z. Xing, Y. Li, H. Li, Discrete multipole dark solitons in saturable nonlinearity media with parity-time symmetric lattices. Eur. Phys. J. Plus 132, 79 (2017)

  19. 19.

    A.V. Yulin, A. Aladyshkina, A.S. Shalin, Motion of dissipative optical fronts under the action of an oscillating pump. Phys. Rev. E 94, 022205 (2016)

  20. 20.

    A.G. Ardakani, Wave propagation through photonic waveguide lattices in the presence of optical gain and loss. Appl. Opt. 55(13), 3589 (2016)

  21. 21.

    R. Kheradmand, K.M. Aghdami, K. Talouneh, The switching of dark and bright soliton in 1D discrete cavity laser. Chaos Solitons Fractals 91, 511–515 (2016)

  22. 22.

    Oleg A. Egorov, Falk Lederer, Yuri S. Kivshar, How does an inclined holding beam affect discrete modulational instability and solitons in nonlinear cavities? OSA 15(7), 4149 (2007)

Download references

Author information

Correspondence to Reza Kheradmand.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motahharynia, A., Aghdami, K.M. & Kheradmand, R. The study of discrete cavity soliton lasers in presence of population inversion. Eur. Phys. J. Plus 135, 2 (2020). https://doi.org/10.1140/epjp/s13360-019-00017-y

Download citation