Advertisement

Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements

  • Xing Xiao
  • Yao Yao
  • Yan-Ling LiEmail author
  • Ying-Mao XieEmail author
Regular Article
  • 21 Downloads

Abstract

It is commonly believed that the fidelity of quantum teleportation in the gravitational field would be degraded due to the heating up by the Hawking radiation. In this paper, we point out that the Hawking effect could be eliminated by the combined action of pre- and post-weak measurements, and thus, the teleportation fidelity is almost completely protected. It is intriguing to notice that the enhancement of fidelity could not be attributed to the improvement of entanglement, but rather to the probabilistic nature of weak measurements. Our work extends the ability of weak measurements as a quantum technique to battle against gravitational decoherence in relativistic quantum information.

Notes

Acknowledgements

This work is supported by the Funds of the National Natural Science Foundation of China under Grant Nos. 11665004, 11605166, 61765007, and 11365011, and supported by Scientific Research Foundation of Jiangxi Provincial Education Department under Grants Nos. GJJ150996 and GJJ150682. YL Li is supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

References

  1. 1.
    R.B. Mann, T.C. Ralph, Relativistic quantum information. Class. Quant. Grav. 29, 220301 (2012)ADSMathSciNetGoogle Scholar
  2. 2.
    I. Fuentes-Schuller, R.B. Mann, Alice Falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)ADSMathSciNetGoogle Scholar
  3. 3.
    K. Brádler, P. Hayden, P. Panangaden, Private information via the Unruh effect. JHEP 08, 074 (2009)ADSMathSciNetGoogle Scholar
  4. 4.
    I. Fuentes, R.B. Mann, E. Martín-Martínez, S. Moradi, Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)ADSGoogle Scholar
  5. 5.
    E. Martín-Martínez, L.J. Garay, J. León, Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)ADSGoogle Scholar
  6. 6.
    E. Martín-Martínez, L.J. Garay, J. León, Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010)ADSGoogle Scholar
  7. 7.
    D.E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)ADSGoogle Scholar
  8. 8.
    Y. Yao, X. Xiao, L. Ge, X. Wang, C.P. Sun, Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)ADSGoogle Scholar
  9. 9.
    D.E. Bruschi, A. Datta, R. Ursin, T.C. Ralph, I. Fuentes, Quantum estimation of the Schwarzschild spacetime parameters of the Earth. Phys. Rev. D 90, 124001 (2014)ADSGoogle Scholar
  10. 10.
    M. Ahmadi, D.E. Bruschi, I. Fuentes, Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)ADSGoogle Scholar
  11. 11.
    Y. Dai, Z. Shen, Y. Shi, Killing quantum entanglement by acceleration or a black hole. JHEP 9, 71 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Wang, Z. Tian, J. Jing, H. Fan, Influence of relativistic effects on satellite-based clock synchronization. Phys. Rev. D 93, 065008 (2016)ADSMathSciNetGoogle Scholar
  13. 13.
    A. Peres, D.R. Terno, Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    S.W. Hawking, Black hole explosions. Nature 248, 30 (1974)ADSzbMATHGoogle Scholar
  15. 15.
    B. Zhang, Q.Y. Cai, L. You, M.S. Zhan, Hidden messenger revealed in Hawking radiation: a resolution to the paradox of black hole information loss. Phys. Lett. B 675, 98 (2009)ADSMathSciNetGoogle Scholar
  16. 16.
    B. Zhang, Q.Y. Cai, M.S. Zhan, L. You, Information conservation is fundamental: recovering the lost information in Hawking radiation. Int. J. Mod. Phys. D 22, 1341014 (2013)ADSzbMATHGoogle Scholar
  17. 17.
    R. Ursin et al., Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)Google Scholar
  18. 18.
    C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)ADSGoogle Scholar
  19. 19.
    D. Rideout et al., Fundamental quantum optics experiments conceivable with satellites-reaching relativistic distances and velocities. Class. Quant. Grav. 29, 224011 (2012)ADSGoogle Scholar
  20. 20.
    G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, P. Villoresi, Interference at the single photon level along satellite-ground channels. Phys. Rev. Lett. 116, 253601 (2016)ADSGoogle Scholar
  21. 21.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  23. 23.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575 (1997)ADSzbMATHGoogle Scholar
  24. 24.
    A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282, 706–709 (1998)ADSGoogle Scholar
  25. 25.
    S.L. Braunstein, H.J. Kimble, Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSGoogle Scholar
  26. 26.
    Y.-H. Kim, S.P. Kulik, Y. Shih, Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)ADSGoogle Scholar
  27. 27.
    R. Riebe et al., Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)ADSGoogle Scholar
  28. 28.
    M.D. Barrett et al., Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)ADSGoogle Scholar
  29. 29.
    S. Olmschenk, D.N. Matsukevich, P. Maunz, D. Hayes, L.M. Duan, C. Monroe, Quantum teleportation between distant matter qubits. Science 323, 486 (2009)ADSGoogle Scholar
  30. 30.
    W. Pfaff et al., Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532 (2014)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    X.L. Wang et al., Quantum teleportation of multiple degrees of freedom in a single photon. Nature 518, 516 (2015)ADSGoogle Scholar
  32. 32.
    S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S.L. Braunstein, Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)ADSGoogle Scholar
  33. 33.
    J. Yin et al., Quantum teleportation and entanglement distribution over 100-km free-space channels. Nature 488, 185–188 (2012)ADSGoogle Scholar
  34. 34.
    P.M. Alsing, G.J. Milburn, Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)ADSGoogle Scholar
  35. 35.
    P.M. Alsing, D. McMahon, G.J. Milburn, Teleportation in a non-inertial frame. J. Opt. B Quant. Semiclass. Opt. 6, S834 (2004)ADSGoogle Scholar
  36. 36.
    N. Friis, A.R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, I. Fuentes, Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)ADSGoogle Scholar
  37. 37.
    X.H. Ge, Y.G. Shen, Teleportation in the background of Schwarzschild space-time. Phys. Lett. B 606, 184–188 (2005)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Q. Pan, J. Jing, Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)ADSMathSciNetGoogle Scholar
  39. 39.
    J. Feng, W.L. Yang, Y.Z. Zhang, H. Fan, Notes on teleportation in an expanding space. Phys. Lett. B 719, 430–434 (2013)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    A.G.S. Landulfo, G.E.A. Matsas, Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A 80, 032315 (2009)ADSMathSciNetGoogle Scholar
  41. 41.
    N.D. Birrell, P.C.W. Davies, Quantum fields in curved space (Cambridge University Press, Cambridge, 1982) zbMATHGoogle Scholar
  42. 42.
    T. Damour, R. Ruffini, Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism. Phys. Rev. D 14, 332 (1976)ADSGoogle Scholar
  43. 43.
    S.M. Barnett, P.M. Radmore, Methods in theoretical quantum optics (Oxford University Press, New York, 1997), pp. 67–80zbMATHGoogle Scholar
  44. 44.
    J. Wang, Q. Pan, J. Jing, Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 692, 202 (2010)ADSGoogle Scholar
  45. 45.
    A.N. Korotkov, A.N. Jordan, Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSGoogle Scholar
  46. 46.
    N. Katz, M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, A.N. Korotkov, Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSGoogle Scholar
  47. 47.
    Y.S. Kim, J.C. Lee, O. Kwon, Y.H. Kim, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)Google Scholar
  48. 48.
    X. Xiao, Y. Yao, W.J. Zhong, Y.L. Li, Y.M. Xie, Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)ADSGoogle Scholar
  49. 49.
    X. Xiao, Y.M. Xie, Y. Yao, Y.L. Li, J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. Ann. Phys. 390, 83 (2018)ADSMathSciNetGoogle Scholar
  50. 50.
    Y.W. Cheong, S.W. Lee, Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)ADSGoogle Scholar
  51. 51.
    M.O. Scully, M.S. Zubairy, Quantum optics (Cambridge University Press, Cambridge, 1997)Google Scholar
  52. 52.
    E. Martín-Martínez, I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)ADSGoogle Scholar
  53. 53.
    W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSzbMATHGoogle Scholar
  54. 54.
    W.L. Li, C.F. Li, G.C. Guo, Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)ADSGoogle Scholar
  55. 55.
    P. Agrawal, A.K. Pati, Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)ADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationGannan Normal UniversityGanzhouChina
  2. 2.Microsystems and Terahertz Research CenterChina Academy of Engineering PhysicsChengduChina
  3. 3.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China

Personalised recommendations