Advertisement

Bilinear representations and lump-type waves for a fifth-order nonlinear wave equation

  • Yuefeng Zhou
  • Chuanjian WangEmail author
  • Xingyong Zhang
  • Hui Fang
Regular Article
  • 27 Downloads

Abstract.

In this work, we study a fifth-order nonlinear wave equation. By using the proper transformation and auxiliary parameter, two different bilinear representations are presented. We also derive a bilinear Bäcklund transformation, a Lax pair and lump-type wave solutions. The dynamics of lump-type wave solutions are investigated and exhibited mathematically and graphically. We further investigate the interaction between a kink-type solitary wave and a lump-type wave. Absorb and emit interactions between two types of solitary wave solutions are presented.

References

  1. 1.
    M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)Google Scholar
  2. 2.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)Google Scholar
  3. 3.
    C.H. Gu, Soliton Theory and Its Application (Springer, Berlin, 1995)Google Scholar
  4. 4.
    Z.D. Dai, J. Liu, Z.J. Liu, Commun. Nonlinear Sci. Numer. Simul. 15, 2331 (2010)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Z.H. Xu, H.L. Chen, M.R. Jiang, Z.D. Dai, W. Chen, Nonlinear Dyn. 78, 461 (2014)CrossRefGoogle Scholar
  6. 6.
    W.X. Ma, Z.N. Zhu, Appl. Math. Comput. 218, 11871 (2012)MathSciNetGoogle Scholar
  7. 7.
    J. Weiss, M. Tabor, G. Carnevale, J. Math. Phys. 24, 522 (1983)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 2013)Google Scholar
  9. 9.
    W.X. Ma, Y. Zhou, J. Differ. Equ. 264, 2633 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    N. Singh, Y. Stepanyants, Wave Motion 64, 92 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Falcon, C. Laroche, S. Fauve, Phys. Rev. Lett. 89, 204501 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    W.X. Ma, Phys. Lett. A 379, 1975 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Tan, Z.D. Dai, Nonlinear Dyn. 89, 2723 (2017)CrossRefGoogle Scholar
  14. 14.
    W. Tan, Z.D. Dai, Nonlinear Dyn. 85, 817 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Tan, Z.D. Dai, H.P. Dai, Therm. Sci. 21, 1673 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.H. Xu, H.L. Chen, Z.D. Dai, Appl. Math. Lett. 37, 34 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.G. Liu, Y. He, Nonlinear Dyn. 92, 1103 (2018)CrossRefGoogle Scholar
  18. 18.
    J.G. Liu, Nonlinear Dyn. 93, 741 (2018)CrossRefGoogle Scholar
  19. 19.
    J.G. Liu, Appl. Math. Lett. 86, 36 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C.J. Wang, H. Fang, Comput. Math. Appl. 74, 3296 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    C.J. Wang, Nonlinear Dyn. 84, 697 (2016)CrossRefGoogle Scholar
  22. 22.
    C.J. Wang, H. Fang, X.X. Tang, Nonlinear Dyn. 95, 2943 (2019)CrossRefGoogle Scholar
  23. 23.
    W. Hereman, A. Nuseir, Math. Comput. Simul. 43, 13 (1997)CrossRefGoogle Scholar
  24. 24.
    A.M. Wazwaz, Phys. Scr. 83, 015012 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A.M. Wazwaz, Comput. Fluids 84, 97 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A.M. Wazwaz, Appl. Math. Model. 38, 110 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Wang, X. Liu, Y. Zhang, Commun. Nonlinear Sci. Numer. Simul. 18, 2313 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A.I. Aliyu, A. Yusuf, Eur. Phys. J. Plus 132, 224 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Wazwaz, L. Kaur, Phys. Scr. 93, 115201 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    B.L. Guo, X.F. Pang, Y.F. Wang, N. Liu, Solitons (De Gruyter, Berlin, 2018)Google Scholar
  31. 31.
    Z.D. Dai, S.L. Li, Q.Y. Dai, M.R. Jiang, J. Huang, Chaos, Solitons Fractals 34, 1148 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuefeng Zhou
    • 1
  • Chuanjian Wang
    • 1
    Email author
  • Xingyong Zhang
    • 1
  • Hui Fang
    • 1
  1. 1.Department of MathematicsKunming University of Science and TechnologyKunmingChina

Personalised recommendations