Advertisement

Probability and output analysis of asymmetric bistable energy harvesters subjected to Gaussian white noise

  • Wei Wang
  • Junyi CaoEmail author
  • Chris R. Bowen
  • Grzegorz Litak
Regular Article
  • 4 Downloads

Abstract.

Due to their excellent broadband response and high sensitivity to low-amplitude excitations, there is significant interest in the theoretical analysis and experimental validation of bistable energy harvesters (BEHs). However, it is difficult in practice to obtain a perfectly symmetric bistable potential energy function, and our current understanding of the influence of asymmetric potentials on the response of BEHs is limited. As a result, this paper sheds light on the influence of asymmetric potentials on the response probability and electrical outputs of BEHs driven by Gaussian white noise. Firstly, the influence of potential well depth on the power outputs and response probability of symmetric BEHs is illustrated. When a quadratic nonlinearity is introduced to characterize the asymmetry, numerical simulations demonstrate that it has a negative effect on the output of BEHs when the noise intensity is relatively low, and the negative influence becomes great with an increase in the degree of asymmetry. From the probability analysis, it is concluded that the probability density function of displacement strongly depends on the degree of asymmetry of the potential function and it is also affected by the excitation intensity. Finally, experiments are carried out which demonstrate that the average output power is indeed influenced by the asymmetric potential of the BEHs under different excitation levels.

References

  1. 1.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Proc. IEEE 96, 1457 (2008)CrossRefGoogle Scholar
  2. 2.
    S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2012)CrossRefGoogle Scholar
  3. 3.
    M.F. Daqaq, R. Masana, A. Erturk, D. Dane Quinn, Appl. Mech. Rev. 66, 040801 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    J. Siang, M.H. Lim, M. Salman Leong, Int. J. Energ. Res. 42, 1866 (2018)CrossRefGoogle Scholar
  5. 5.
    P.L. Green, E. Papatheou, N.D. Sims, J. Intell. Mater. Syst. Struct. 24, 1494 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Siddiqui, D.-I. Kim, E. Roh, L.T. Duy, T.Q. Trung, M.T. Nguyen, N.-E. Lee, Nano Energy 30, 434 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Lee, C.Y. Chen, S. Wang, S.N. Cha, Y.J. Park, J.M. Kim, L.J. Chou, Z.L. Wang, Adv. Mater. 24, 1759 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Almusallam, Z. Luo, A. Komolafe, K. Yang, A. Robinson, R. Torah, S. Beeby, Nano Energy 33, 146 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Salauddin, M.S. Rasel, J.W. Kim, J.Y. Park, Energ. Convers. Manag. 153, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Quan, Y. Wu, Y. Yang, Nano Res. 8, 3272 (2015)CrossRefGoogle Scholar
  11. 11.
    M.-K. Kim, M.-S. Kim, S. Lee, C. Kim, Y.-J. Kim, Smart Mat. Struct. 23, 105002 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    I. Iyyappan, M. Ponmurugan, J. Stat. Mech. Theory E 2017, 093207 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Zhou, J. Cao, W. Wang, S. Liu, J. Lin, Smart Mat. Struct. 24, 055008 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26, 1131 (2003)CrossRefGoogle Scholar
  15. 15.
    M.F. Daqaq, J. Sound Vib. 330, 2554 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.F. Daqaq, Nonlinear Dyn. 69, 1063 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, J.W. Zu, Appl. Phys. Lett. 103, 041905 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106, 093901 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhang, C.S. Cai, W. Zhang, Smart Mat. Struct. 23, 055002 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    N. Tran, M.H. Ghayesh, M. Arjomandi, Int. J. Eng. Sci. 127, 162 (2018)CrossRefGoogle Scholar
  21. 21.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Appl. Phys. Lett. 95, 174103 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    R. Masana, M.F. Daqaq, J. Vib. Acoust. 133, 011007 (2011)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, L. Tang, K. Liu, J. Intell. Mater. Syst. Struct. 28, 307 (2016)Google Scholar
  24. 24.
    H.-C. Song, P. Kumar, R. Sriramdas, H. Lee, N. Sharpes, M.-G. Kang, D. Maurya, M. Sanghadasa, H.-W. Kang, J. Ryu, W.T. Reynolds, S. Priya, Appl. Energy 225, 1132 (2018)CrossRefGoogle Scholar
  25. 25.
    K.Q. Fan, Q.X. Tan, H.Y. Liu, Y.W. Zhang, M.L. Cai, Mech. Syst. Signal Pr. 117, 594 (2019)CrossRefGoogle Scholar
  26. 26.
    A. Erturk, J. Hoffmann, D.J. Inman, Appl. Phys. Lett. 94, 254102 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S. Zhao, A. Erturk, Appl. Phys. Lett. 102, 103902 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    R. Masana, M.F. Daqaq, J. Appl. Phys. 111, 044501 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    A.F. Arrieta, T. Delpero, A.E. Bergamini, P. Ermanni, Appl. Phys. Lett. 102, 173904 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Zhou, J. Cao, A. Erturk, J. Lin, Appl. Phys. Lett. 102, 173901 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    W. Liu, F. Formosa, A. Badel, J. Intell. Mater. Syst. Struct. 28, 671 (2016)CrossRefGoogle Scholar
  32. 32.
    P. Wolszczak, K. Lygas, G. Litak, Mech. Syst. Signal Pr. 107, 43 (2018)CrossRefGoogle Scholar
  33. 33.
    P. Kim, J. Seok, J. Sound Vib. 333, 5525 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Zhou, W. Qin, P. Zhu, Mech. Syst. Signal Pr. 84, 158 (2017)CrossRefGoogle Scholar
  35. 35.
    Z. Zhou, W. Qin, Y. Yang, P. Zhu, Sensor Actuat. A-Phys. 265, 297 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energy 133, 33 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Kim, D. Son, J. Seok, Appl. Phys. Lett. 108, 243902 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Zhou, W. Qin, P. Zhu, Sensor Actuat. A-Phys. 243, 151 (2016)CrossRefGoogle Scholar
  39. 39.
    G. Litak, M.I. Friswell, S. Adhikari, Appl. Phys. Lett. 96, 214103 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    W. Martens, U. von Wagner, G. Litak, Eur. Phys. J. ST 222, 1665 (2013)CrossRefGoogle Scholar
  41. 41.
    Y.G. Yang, W. Xu, Nonlinear Dyn. 94, 639 (2018)CrossRefGoogle Scholar
  42. 42.
    W.-A. Jiang, L.-Q. Chen, J. Sound Vib. 377, 264 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    R. Zheng, K. Nakano, H. Hu, D. Su, M.P. Cartmell, J. Sound Vib. 333, 2568 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    H. Li, W. Qin, W. Deng, R. Tian, Eur. Phys. J. Plus 131, 60 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Jin, S. Xiao, Y. Zhang, J. Stat. Mech. Theory E 2018, 123211 (2018)CrossRefGoogle Scholar
  46. 46.
    C.B. Lan, W.Y. Qin, H.T. Li, Acta Phys. Sin. Ch. Ed. 64, 080503 (2015)Google Scholar
  47. 47.
    H. Li, W. Qin, Nonlinear Dyn. 81, 1751 (2015)CrossRefGoogle Scholar
  48. 48.
    Z. Zhou, W. Qin, P. Zhu, Energy 126, 527 (2017)CrossRefGoogle Scholar
  49. 49.
    R.L. Badzey, P. Mohanty, Nature 437, 995 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    V.N. Chizhevsky, G. Giacomelli, Phys. Rev. E 73, 022103 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    S. Jeyakumari, V. Chinnathambi, S. Rajasekar, M.A.F. Sanjuan, Int. J. Bifurcat. Chaos 21, 275 (2011)CrossRefGoogle Scholar
  52. 52.
    L. Cveticanin, M. Zukovic, G. Mester, I. Biro, J. Sarosi, Acta Mech. 227, 1727 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    R.L. Harne, K.W. Wang, J. Vib. Acoust. 136, 021009 (2013)CrossRefGoogle Scholar
  54. 54.
    Q.F. He, M.F. Daqaq, J. Sound Vib. 333, 3479 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    E. Halvorsen, Phys. Rev. E 87, 042129 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    W. Wang, J. Cao, C.R. Bowen, Y. Zhang, J. Lin, Nonlinear Dyn. 94, 1183 (2018)CrossRefGoogle Scholar
  57. 57.
    W. Wang, J. Cao, C.R. Bowen, D.J. Inman, J. Lin, Appl. Phys. Lett. 112, 213903 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    S. Zhou, L. Zuo, Commun. Nonlinear Sci. 61, 271 (2018)CrossRefGoogle Scholar
  59. 59.
    Y. Li, S. Zhou, AIP Adv. 8, 125212 (2018)ADSCrossRefGoogle Scholar
  60. 60.
    W. Wang, J. Cao, C.R. Bowen, G. Litak, Eur. Phys. J. B 91, 254 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Qiao, Y. Lei, N. Li, Mech. Syst. Signal Pr. 122, 502 (2019)CrossRefGoogle Scholar
  62. 62.
    Y.G. Leng, Z.H. Lai, Acta Phys. Sin. Ch. Ed. 63, 020502 (2014)Google Scholar
  63. 63.
    G. Litak, M. Borowiec, Nonlinear Dyn. 77, 681 (2014)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Wang
    • 1
  • Junyi Cao
    • 1
    Email author
  • Chris R. Bowen
    • 2
  • Grzegorz Litak
    • 3
  1. 1.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical EngineeringXi’an Jiaotong UniversityXi’an, ShaanxiChina
  2. 2.Materials and Structures Centre, Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland

Personalised recommendations